Club-guessing and non-structure of trees
Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 237-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the possibilities of constructing, in ZFC without
any additional assumptions, strongly equivalent non-isomorphic
trees of regular power. For example, we show that there are
non-isomorphic trees of power $\omega _{2}$ and of height
$\omega \cdot \omega $ such that for all $\alpha \omega
_{1}\cdot \omega \cdot \omega $, $E$ has a winning strategy in
the Ehrenfeucht–Fra\accent"7F ıssé game of length
$\alpha $. The main tool is the notion of a club-guessing
sequence.
Keywords:
study possibilities constructing zfc without additional assumptions strongly equivalent non isomorphic trees regular power example there non isomorphic trees power omega height omega cdot omega alpha omega cdot omega cdot omega has winning strategy ehrenfeucht fra accent game length alpha main tool notion club guessing sequence
Affiliations des auteurs :
Tapani Hyttinen 1
@article{10_4064_fm168_3_2,
author = {Tapani Hyttinen},
title = {Club-guessing and non-structure of trees},
journal = {Fundamenta Mathematicae},
pages = {237--249},
publisher = {mathdoc},
volume = {168},
number = {3},
year = {2001},
doi = {10.4064/fm168-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-2/}
}
Tapani Hyttinen. Club-guessing and non-structure of trees. Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 237-249. doi: 10.4064/fm168-3-2
Cité par Sources :