Espaces de suites réelles complètement
métrisables
Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 199-235
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be an hereditary subspace of the Polish space ${\mathbb
R}^\omega $ of real sequences, i.e. a subspace such that
$[x=(x_n)_n\in X$ and $\forall n$, $|y_n|\leq |x_n|]\Rightarrow
y=(y_n)_n\in X$. Does $X$ admit a complete metric compatible
with its vector structure? We have two results:
$\bullet $
If such an $X$ has a complete metric $\delta $, there exists a
unique pair $(E,F)$ of hereditary subspaces with $E\subseteq
X\subseteq F$, $(E,\delta )$ complete separable, and $F$
complete maximal in a strong sense. On $E$ and $F$, the metrics
have a simple form, and the spaces $E$ are Borel (${\bf \Pi
}_3^0$ or ${\bf \Sigma }_2^0$) in ${\mathbb R}^\omega $. In
particular, if $X$ is separable, then $X=E$. $\bullet $ If
$X$ is an hereditary space, analytic as a subset of ${\mathbb
R}^\omega $, we can find a subspace of $X$ strongly isomorphic
to the space $c_{00}$ of finite sequences, or we can find a pair
$(E,F)$ and a metric with the same properties around $X$. If $X$
is ${\bf \Sigma }_3^0$ in ${\mathbb R}^\omega $, we get a complete
trichotomy describing the possible topologies of $X$, which
makes precise a result of [C], but for general $X$'s, there are
examples of various situations.
Mots-clés :
hereditary subspace polish space mathbb omega real sequences subspace forall leq rightarrow does admit complete metric compatible its vector structure have results bullet has complete metric delta there exists unique pair hereditary subspaces subseteq subseteq delta complete separable complete maximal strong sense metrics have simple form spaces borel sigma mathbb omega particular separable bullet hereditary space analytic subset mathbb omega subspace strongly isomorphic space finite sequences pair metric properties around sigma mathbb omega get complete trichotomy describing possible topologies which makes precise result general there examples various situations
Affiliations des auteurs :
Pierre Casevitz 1
@article{10_4064_fm168_3_1,
author = {Pierre Casevitz},
title = {Espaces de suites r\'eelles compl\`etement
m\'etrisables},
journal = {Fundamenta Mathematicae},
pages = {199--235},
publisher = {mathdoc},
volume = {168},
number = {3},
year = {2001},
doi = {10.4064/fm168-3-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-1/}
}
Pierre Casevitz. Espaces de suites réelles complètement métrisables. Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 199-235. doi: 10.4064/fm168-3-1
Cité par Sources :