Countably convex $G_{\delta }$ sets
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 131-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate countably convex $G_{\delta }$ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set $S$ is a subset $P\subseteq S$ so that for every $x\in P$ and open neighborhood $u$ of $x$ there exists a finite set $X\subseteq P\cap u$ such that $\mathop {\rm conv}(X)\not \subseteq S$. For closed sets this condition is also necessary. We show that for countably convex $G_{\delta }$ subsets of infinite-dimensional Banach spaces there are no necessary limitations on cliques and semi-cliques. Various necessary conditions on cliques and semi-cliques are obtained for countably convex $G_{\delta }$ subsets of finite-dimensional spaces. The results distinguish dimension $d\le 3$ from dimension $d\ge 4$: in a countably convex $G_{\delta }$ subset of ${\mathbb R}^{3}$ all cliques are scattered, whereas in ${\mathbb R}^4$ a countably convex $G_{\delta }$ set may contain a dense-in-itself clique.
DOI : 10.4064/fm168-2-4
Keywords: investigate countably convex delta subsets banach spaces subset linear space countably convex represented countable union convex sets known sufficient condition countable convexity arbitrary subset separable normed space does contain semi clique semi clique set subset subseteq every neighborhood there exists finite set subseteq cap mathop conv subseteq closed sets condition necessary countably convex delta subsets infinite dimensional banach spaces there necessary limitations cliques semi cliques various necessary conditions cliques semi cliques obtained countably convex delta subsets finite dimensional spaces results distinguish dimension dimension countably convex delta subset mathbb cliques scattered whereas mathbb countably convex delta set may contain dense in itself clique

Vladimir Fonf 1 ; Menachem Kojman 1

1 Department of Mathematics Ben Gurion University of the Negev Beer Sheva, Israel
@article{10_4064_fm168_2_4,
     author = {Vladimir Fonf and Menachem Kojman},
     title = {Countably convex $G_{\delta }$ sets},
     journal = {Fundamenta Mathematicae},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2001},
     doi = {10.4064/fm168-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-4/}
}
TY  - JOUR
AU  - Vladimir Fonf
AU  - Menachem Kojman
TI  - Countably convex $G_{\delta }$ sets
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 131
EP  - 140
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-4/
DO  - 10.4064/fm168-2-4
LA  - en
ID  - 10_4064_fm168_2_4
ER  - 
%0 Journal Article
%A Vladimir Fonf
%A Menachem Kojman
%T Countably convex $G_{\delta }$ sets
%J Fundamenta Mathematicae
%D 2001
%P 131-140
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-4/
%R 10.4064/fm168-2-4
%G en
%F 10_4064_fm168_2_4
Vladimir Fonf; Menachem Kojman. Countably convex $G_{\delta }$ sets. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 131-140. doi : 10.4064/fm168-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-4/

Cité par Sources :