On nowhere weakly symmetric functions and
functions with two-element range
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 119-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A function $f : {\mathbb R}\to\{0,1\}$ is
weakly symmetric (resp. weakly symmetrically continuous)
at $x\in{\mathbb R}$
provided there is a sequence $h_n\to 0$ such that
$f(x+h_n)=f(x-h_n)=f(x)$
(resp. $f(x+h_n)=f(x-h_n)$) for every $n$.
We characterize the sets $S(f)$ of all points
at which $f$ fails to be weakly symmetrically continuous
and show that $f$
must be weakly symmetric at some $x\in{\mathbb R}\setminus S(f)$.
In particular, there is no
$f : {\mathbb R}\to\{0,1\}$ which is
nowhere weakly symmetric.
It is also shown that if at each point $x$ we ignore
some countable set from which we can choose the sequence $h_n$, then
there exists a function $f : {\mathbb R}\to\{0,1\}$
which is nowhere weakly symmetric
in this weaker sense if and only if the continuum hypothesis holds.
Keywords:
function mathbb weakly symmetric resp weakly symmetrically continuous mathbb provided there sequence n x h resp n x h every characterize sets points which fails weakly symmetrically continuous weakly symmetric mathbb setminus particular there mathbb which nowhere weakly symmetric shown each point ignore countable set which choose sequence there exists function mathbb which nowhere weakly symmetric weaker sense only continuum hypothesis holds
Affiliations des auteurs :
Krzysztof Ciesielski 1 ; Kandasamy Muthuvel 2 ; Andrzej Nowik 3
@article{10_4064_fm168_2_3,
author = {Krzysztof Ciesielski and Kandasamy Muthuvel and Andrzej Nowik},
title = {On nowhere weakly symmetric functions and
functions with two-element range},
journal = {Fundamenta Mathematicae},
pages = {119--130},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2001},
doi = {10.4064/fm168-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/}
}
TY - JOUR AU - Krzysztof Ciesielski AU - Kandasamy Muthuvel AU - Andrzej Nowik TI - On nowhere weakly symmetric functions and functions with two-element range JO - Fundamenta Mathematicae PY - 2001 SP - 119 EP - 130 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/ DO - 10.4064/fm168-2-3 LA - en ID - 10_4064_fm168_2_3 ER -
%0 Journal Article %A Krzysztof Ciesielski %A Kandasamy Muthuvel %A Andrzej Nowik %T On nowhere weakly symmetric functions and functions with two-element range %J Fundamenta Mathematicae %D 2001 %P 119-130 %V 168 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/ %R 10.4064/fm168-2-3 %G en %F 10_4064_fm168_2_3
Krzysztof Ciesielski; Kandasamy Muthuvel; Andrzej Nowik. On nowhere weakly symmetric functions and functions with two-element range. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 119-130. doi: 10.4064/fm168-2-3
Cité par Sources :