On nowhere weakly symmetric functions and functions with two-element range
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 119-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A function $f : {\mathbb R}\to\{0,1\}$ is weakly symmetric (resp. weakly symmetrically continuous) at $x\in{\mathbb R}$ provided there is a sequence $h_n\to 0$ such that $f(x+h_n)=f(x-h_n)=f(x)$ (resp. $f(x+h_n)=f(x-h_n)$) for every $n$. We characterize the sets $S(f)$ of all points at which $f$ fails to be weakly symmetrically continuous and show that $f$ must be weakly symmetric at some $x\in{\mathbb R}\setminus S(f)$. In particular, there is no $f : {\mathbb R}\to\{0,1\}$ which is nowhere weakly symmetric. It is also shown that if at each point $x$ we ignore some countable set from which we can choose the sequence $h_n$, then there exists a function $f : {\mathbb R}\to\{0,1\}$ which is nowhere weakly symmetric in this weaker sense if and only if the continuum hypothesis holds.
DOI : 10.4064/fm168-2-3
Keywords: function mathbb weakly symmetric resp weakly symmetrically continuous mathbb provided there sequence n x h resp n x h every characterize sets points which fails weakly symmetrically continuous weakly symmetric mathbb setminus particular there mathbb which nowhere weakly symmetric shown each point ignore countable set which choose sequence there exists function mathbb which nowhere weakly symmetric weaker sense only continuum hypothesis holds

Krzysztof Ciesielski 1 ; Kandasamy Muthuvel 2 ; Andrzej Nowik 3

1 Department of Mathematics West Virginia University Morgantown, WV 26506-6310, U.S.A.
2 Department of Mathematics University of Wisconsin-Oshkosh Oshkosh, WI 54901-8601, U.S.A.
3 Institute of Mathematics Polish Academy of Sciences Abrahama 18, Sopot, Poland and Department of Mathematics Gda/nsk University Wita Stwosza 57 80-952 Gda/nsk, Poland
@article{10_4064_fm168_2_3,
     author = {Krzysztof Ciesielski and Kandasamy Muthuvel and Andrzej Nowik},
     title = {On nowhere weakly symmetric functions and
functions with two-element range},
     journal = {Fundamenta Mathematicae},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2001},
     doi = {10.4064/fm168-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/}
}
TY  - JOUR
AU  - Krzysztof Ciesielski
AU  - Kandasamy Muthuvel
AU  - Andrzej Nowik
TI  - On nowhere weakly symmetric functions and
functions with two-element range
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 119
EP  - 130
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/
DO  - 10.4064/fm168-2-3
LA  - en
ID  - 10_4064_fm168_2_3
ER  - 
%0 Journal Article
%A Krzysztof Ciesielski
%A Kandasamy Muthuvel
%A Andrzej Nowik
%T On nowhere weakly symmetric functions and
functions with two-element range
%J Fundamenta Mathematicae
%D 2001
%P 119-130
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/
%R 10.4064/fm168-2-3
%G en
%F 10_4064_fm168_2_3
Krzysztof Ciesielski; Kandasamy Muthuvel; Andrzej Nowik. On nowhere weakly symmetric functions and
functions with two-element range. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 119-130. doi : 10.4064/fm168-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-3/

Cité par Sources :