Expansions of o-minimal structures by sparse sets
Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 55-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an o-minimal expansion $\mathfrak R$ of the ordered
additive group of real numbers and $E\subseteq {\mathbb
R}$, we consider the extent to which basic metric and
topological properties of subsets of ${\mathbb R}$
definable in the expansion $({\mathfrak R},E)$ are
inherited by the subsets of ${\mathbb R}$
definable in certain expansions of $({\mathfrak
R},E)$. In particular, suppose that $f(E^m)$ has no interior for
each $m\in {\mathbb N}$ and $f : {\mathbb
R}^m\to {\mathbb R}$ definable in ${
\mathfrak R}$, and that every subset of ${\mathbb
R}$ definable in $({\mathfrak R},E)$ has
interior or is nowhere dense. Then every subset of ${
\mathbb R}$ definable in $({\mathfrak R},
(S))$ has interior or is nowhere dense, where $S$ ranges over
all nonempty subsets of all cartesian products $E^k$ ($k \geq
1$). The same holds true with “nowhere dense” replaced by any
of “null” (in the sense of Lebesgue), “countable”, “a
finite union of discrete sets”, or “discrete”. We use this
(together with a result of L. van den Dries) to
give an example of an expansion of the real field that defines
an isomorphic copy of the ordered ring of integers, yet does not
define ${\mathbb Z}$.
Keywords:
given o minimal expansion mathfrak ordered additive group real numbers subseteq mathbb consider extent which basic metric topological properties subsets mathbb definable expansion mathfrak inherited subsets mathbb definable certain expansions mathfrak particular suppose has interior each mathbb mathbb mathbb definable mathfrak every subset mathbb definable mathfrak has interior nowhere dense every subset mathbb definable mathfrak has interior nowhere dense where ranges nonempty subsets cartesian products geq holds nowhere dense replaced null sense lebesgue countable finite union discrete sets discrete together result nbsp van den dries example expansion real field defines isomorphic copy ordered ring integers yet does define mathbb
Affiliations des auteurs :
Harvey Friedman 1 ; Chris Miller 1
@article{10_4064_fm167_1_4,
author = {Harvey Friedman and Chris Miller},
title = {Expansions of o-minimal structures by sparse sets},
journal = {Fundamenta Mathematicae},
pages = {55--64},
publisher = {mathdoc},
volume = {167},
number = {1},
year = {2001},
doi = {10.4064/fm167-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-4/}
}
TY - JOUR AU - Harvey Friedman AU - Chris Miller TI - Expansions of o-minimal structures by sparse sets JO - Fundamenta Mathematicae PY - 2001 SP - 55 EP - 64 VL - 167 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-4/ DO - 10.4064/fm167-1-4 LA - en ID - 10_4064_fm167_1_4 ER -
Harvey Friedman; Chris Miller. Expansions of o-minimal structures by sparse sets. Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 55-64. doi: 10.4064/fm167-1-4
Cité par Sources :