A López-Escobar theorem for metric structures, and the topological Vaught conjecture
Fundamenta Mathematicae, Tome 234 (2016) no. 1, pp. 55-72
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a version of López-Escobar’s theorem holds in the setting
of model theory for metric structures. More precisely, let $\mathbb{U}$
denote the Urysohn sphere and let $\operatorname{Mod}(\mathcal{L},\mathbb{U})$ be the
space of metric $\mathcal{L}$-structures supported on $\mathbb{U}$. Then for
any $\operatorname{Iso}(\mathbb{U})$-invariant Borel function $f\colon \operatorname{Mod}(\mathcal{L}, \mathbb{U})\rightarrow \lbrack 0,1]$, there exists a sentence $\phi $ of $%
\mathcal{L}_{\omega _{1}\omega }$ such that for all $M\in \operatorname{Mod}(\mathcal{L},%
\mathbb{U})$ we have $f(M)=\phi ^{M}$. This answers a question of Ivanov and
Majcher-Iwanow. We prove several consequences, for example every orbit
equivalence relation of a Polish group action is Borel isomorphic to the
isomorphism relation on the set of models of a given $\mathcal{L }%
_{\omega_{1}\omega }$-sentence that are supported on the Urysohn sphere.
This in turn provides a model-theoretic reformulation of the topological
Vaught conjecture.
Keywords:
version pez escobar theorem holds setting model theory metric structures precisely mathbb denote urysohn sphere operatorname mod mathcal mathbb space metric mathcal structures supported mathbb operatorname iso mathbb invariant borel function colon operatorname mod mathcal mathbb rightarrow lbrack there exists sentence phi mathcal omega omega operatorname mod mathcal mathbb have phi answers question ivanov majcher iwanow prove several consequences example every orbit equivalence relation polish group action borel isomorphic isomorphism relation set models given mathcal omega omega sentence supported urysohn sphere turn provides model theoretic reformulation topological vaught conjecture
Affiliations des auteurs :
Samuel Coskey 1 ; Martino Lupini 2
@article{10_4064_fm135_1_2016,
author = {Samuel Coskey and Martino Lupini},
title = {A {L\'opez-Escobar} theorem for metric structures, and the topological {Vaught} conjecture},
journal = {Fundamenta Mathematicae},
pages = {55--72},
publisher = {mathdoc},
volume = {234},
number = {1},
year = {2016},
doi = {10.4064/fm135-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm135-1-2016/}
}
TY - JOUR AU - Samuel Coskey AU - Martino Lupini TI - A López-Escobar theorem for metric structures, and the topological Vaught conjecture JO - Fundamenta Mathematicae PY - 2016 SP - 55 EP - 72 VL - 234 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm135-1-2016/ DO - 10.4064/fm135-1-2016 LA - en ID - 10_4064_fm135_1_2016 ER -
%0 Journal Article %A Samuel Coskey %A Martino Lupini %T A López-Escobar theorem for metric structures, and the topological Vaught conjecture %J Fundamenta Mathematicae %D 2016 %P 55-72 %V 234 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm135-1-2016/ %R 10.4064/fm135-1-2016 %G en %F 10_4064_fm135_1_2016
Samuel Coskey; Martino Lupini. A López-Escobar theorem for metric structures, and the topological Vaught conjecture. Fundamenta Mathematicae, Tome 234 (2016) no. 1, pp. 55-72. doi: 10.4064/fm135-1-2016
Cité par Sources :