A continuum of expanders
Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 143-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A regular equivalence between two graphs $\varGamma ,\varGamma ’$ is a pair of uniformly proper Lipschitz maps $V\varGamma \to V\varGamma ’$ and $V\varGamma ’\to V\varGamma $. Using separation profiles we prove that there are $2^{\aleph _0}$ regular equivalence classes of expander graphs, and of finitely generated groups with a representative which isometrically contains expanders.
Keywords:
regular equivalence between graphs vargamma vargamma pair uniformly proper lipschitz maps vargamma vargamma vargamma vargamma using separation profiles prove there aleph regular equivalence classes expander graphs finitely generated groups representative which isometrically contains expanders
Affiliations des auteurs :
David Hume 1
@article{10_4064_fm101_11_2016,
author = {David Hume},
title = {A continuum of expanders},
journal = {Fundamenta Mathematicae},
pages = {143--152},
publisher = {mathdoc},
volume = {238},
number = {2},
year = {2017},
doi = {10.4064/fm101-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm101-11-2016/}
}
David Hume. A continuum of expanders. Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 143-152. doi: 10.4064/fm101-11-2016
Cité par Sources :