A continuum of expanders
Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 143-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A regular equivalence between two graphs $\varGamma ,\varGamma ’$ is a pair of uniformly proper Lipschitz maps $V\varGamma \to V\varGamma ’$ and $V\varGamma ’\to V\varGamma $. Using separation profiles we prove that there are $2^{\aleph _0}$ regular equivalence classes of expander graphs, and of finitely generated groups with a representative which isometrically contains expanders.
DOI : 10.4064/fm101-11-2016
Keywords: regular equivalence between graphs vargamma vargamma pair uniformly proper lipschitz maps vargamma vargamma vargamma vargamma using separation profiles prove there aleph regular equivalence classes expander graphs finitely generated groups representative which isometrically contains expanders

David Hume 1

1 Mathematical Institute University of Oxford Woodstock Road Oxford, OX2 6GG, UK
@article{10_4064_fm101_11_2016,
     author = {David Hume},
     title = {A continuum of expanders},
     journal = {Fundamenta Mathematicae},
     pages = {143--152},
     publisher = {mathdoc},
     volume = {238},
     number = {2},
     year = {2017},
     doi = {10.4064/fm101-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm101-11-2016/}
}
TY  - JOUR
AU  - David Hume
TI  - A continuum of expanders
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 143
EP  - 152
VL  - 238
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm101-11-2016/
DO  - 10.4064/fm101-11-2016
LA  - en
ID  - 10_4064_fm101_11_2016
ER  - 
%0 Journal Article
%A David Hume
%T A continuum of expanders
%J Fundamenta Mathematicae
%D 2017
%P 143-152
%V 238
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm101-11-2016/
%R 10.4064/fm101-11-2016
%G en
%F 10_4064_fm101_11_2016
David Hume. A continuum of expanders. Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 143-152. doi : 10.4064/fm101-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm101-11-2016/

Cité par Sources :