Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_80_1_51_56, author = {V\v{e}ra Trnkov\'a}, title = {$X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers}, journal = {Fundamenta Mathematicae}, pages = {51--56}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {1973}, doi = {10.4064/fm-80-1-51-56}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/} }
TY - JOUR AU - Věra Trnková TI - $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers JO - Fundamenta Mathematicae PY - 1973 SP - 51 EP - 56 VL - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/ DO - 10.4064/fm-80-1-51-56 LA - en ID - 10_4064_fm_80_1_51_56 ER -
%0 Journal Article %A Věra Trnková %T $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers %J Fundamenta Mathematicae %D 1973 %P 51-56 %V 80 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/ %R 10.4064/fm-80-1-51-56 %G en %F 10_4064_fm_80_1_51_56
Věra Trnková. $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers. Fundamenta Mathematicae, Tome 80 (1973) no. 1, pp. 51-56. doi : 10.4064/fm-80-1-51-56. http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/
Cité par Sources :