$X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers
Fundamenta Mathematicae, Tome 80 (1973) no. 1, pp. 51-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_80_1_51_56,
author = {V\v{e}ra Trnkov\'a},
title = {$X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers},
journal = {Fundamenta Mathematicae},
pages = {51--56},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {1973},
doi = {10.4064/fm-80-1-51-56},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/}
}
TY - JOUR AU - Věra Trnková TI - $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers JO - Fundamenta Mathematicae PY - 1973 SP - 51 EP - 56 VL - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/ DO - 10.4064/fm-80-1-51-56 LA - en ID - 10_4064_fm_80_1_51_56 ER -
%0 Journal Article %A Věra Trnková %T $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers %J Fundamenta Mathematicae %D 1973 %P 51-56 %V 80 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/ %R 10.4064/fm-80-1-51-56 %G en %F 10_4064_fm_80_1_51_56
Věra Trnková. $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers. Fundamenta Mathematicae, Tome 80 (1973) no. 1, pp. 51-56. doi: 10.4064/fm-80-1-51-56
Cité par Sources :