$X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers
Fundamenta Mathematicae, Tome 80 (1973) no. 1, pp. 51-56.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-80-1-51-56

Věra Trnková 1

1
@article{10_4064_fm_80_1_51_56,
     author = {V\v{e}ra Trnkov\'a},
     title = {$X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers},
     journal = {Fundamenta Mathematicae},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {1973},
     doi = {10.4064/fm-80-1-51-56},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/}
}
TY  - JOUR
AU  - Věra Trnková
TI  - $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers
JO  - Fundamenta Mathematicae
PY  - 1973
SP  - 51
EP  - 56
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/
DO  - 10.4064/fm-80-1-51-56
LA  - en
ID  - 10_4064_fm_80_1_51_56
ER  - 
%0 Journal Article
%A Věra Trnková
%T $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers
%J Fundamenta Mathematicae
%D 1973
%P 51-56
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/
%R 10.4064/fm-80-1-51-56
%G en
%F 10_4064_fm_80_1_51_56
Věra Trnková. $X^m$ is homeomorphic to $X^n$ iff m ~ n where ~ is a congruence on natural numbers. Fundamenta Mathematicae, Tome 80 (1973) no. 1, pp. 51-56. doi : 10.4064/fm-80-1-51-56. http://geodesic.mathdoc.fr/articles/10.4064/fm-80-1-51-56/

Cité par Sources :