Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$
Fundamenta Mathematicae, Tome 70 (1971) no. 2, pp. 109-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-70-2-109-115

Ralph Bean 1

1
@article{10_4064_fm_70_2_109_115,
     author = {Ralph Bean},
     title = {Decompositions of $E^3$ which satisfy a uniform {Lipschitz} condition are factors of $E^4$},
     journal = {Fundamenta Mathematicae},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1971},
     doi = {10.4064/fm-70-2-109-115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/}
}
TY  - JOUR
AU  - Ralph Bean
TI  - Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$
JO  - Fundamenta Mathematicae
PY  - 1971
SP  - 109
EP  - 115
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/
DO  - 10.4064/fm-70-2-109-115
LA  - en
ID  - 10_4064_fm_70_2_109_115
ER  - 
%0 Journal Article
%A Ralph Bean
%T Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$
%J Fundamenta Mathematicae
%D 1971
%P 109-115
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/
%R 10.4064/fm-70-2-109-115
%G en
%F 10_4064_fm_70_2_109_115
Ralph Bean. Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$. Fundamenta Mathematicae, Tome 70 (1971) no. 2, pp. 109-115. doi : 10.4064/fm-70-2-109-115. http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/

Cité par Sources :