Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_70_2_109_115, author = {Ralph Bean}, title = {Decompositions of $E^3$ which satisfy a uniform {Lipschitz} condition are factors of $E^4$}, journal = {Fundamenta Mathematicae}, pages = {109--115}, publisher = {mathdoc}, volume = {70}, number = {2}, year = {1971}, doi = {10.4064/fm-70-2-109-115}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/} }
TY - JOUR AU - Ralph Bean TI - Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$ JO - Fundamenta Mathematicae PY - 1971 SP - 109 EP - 115 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/ DO - 10.4064/fm-70-2-109-115 LA - en ID - 10_4064_fm_70_2_109_115 ER -
%0 Journal Article %A Ralph Bean %T Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$ %J Fundamenta Mathematicae %D 1971 %P 109-115 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/ %R 10.4064/fm-70-2-109-115 %G en %F 10_4064_fm_70_2_109_115
Ralph Bean. Decompositions of $E^3$ which satisfy a uniform Lipschitz condition are factors of $E^4$. Fundamenta Mathematicae, Tome 70 (1971) no. 2, pp. 109-115. doi : 10.4064/fm-70-2-109-115. http://geodesic.mathdoc.fr/articles/10.4064/fm-70-2-109-115/
Cité par Sources :