Dichotomies pour les espaces de suites réelles
Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 249-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation $E^X_G$ where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation $E_1$ is Borel reducible to E. (C) is only proved for special cases as in [So].  In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space $ℝ^ω$ of real sequences, i.e., subspaces such that $[y=(y_n)_n ∈ X$ and ∀n, $|x_n| ≤ |y_n|] ⇒ x=(x_n)_n ∈ X$. If such an X is analytic as a subset of $ℝ^ω$, then either X is Polishable as a vector subspace, or X admits a subspace strongly isomorphic to the space $c_{00}$ of finite sequences, or to the space $ℓ_∞$ of bounded sequences.  When X is Polishable, the metrics have a very simple form as in the case studied in [So], which allows us to study precisely the properties of those X's
DOI : 10.4064/fm-165-3-249-284
Mots-clés : Borel complexity, subspaces of real sequences, topology of subspaces of real sequences, Polishable spaces, dichotomy theorems, Borel equivalence relations

Pierre Casevitz 1

1
@article{10_4064_fm_165_3_249_284,
     author = {Pierre Casevitz},
     title = {Dichotomies pour les espaces de suites r\'eelles},
     journal = {Fundamenta Mathematicae},
     pages = {249--284},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-165-3-249-284},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/}
}
TY  - JOUR
AU  - Pierre Casevitz
TI  - Dichotomies pour les espaces de suites réelles
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 249
EP  - 284
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/
DO  - 10.4064/fm-165-3-249-284
LA  - fr
ID  - 10_4064_fm_165_3_249_284
ER  - 
%0 Journal Article
%A Pierre Casevitz
%T Dichotomies pour les espaces de suites réelles
%J Fundamenta Mathematicae
%D 2000
%P 249-284
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/
%R 10.4064/fm-165-3-249-284
%G fr
%F 10_4064_fm_165_3_249_284
Pierre Casevitz. Dichotomies pour les espaces de suites réelles. Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 249-284. doi : 10.4064/fm-165-3-249-284. http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/

Cité par Sources :