Dichotomies pour les espaces de suites réelles
Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 249-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation $E^X_G$ where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation $E_1$ is Borel reducible to E. (C) is only proved for special cases as in [So]. In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space $ℝ^ω$ of real sequences, i.e., subspaces such that $[y=(y_n)_n ∈ X$ and ∀n, $|x_n| ≤ |y_n|] ⇒ x=(x_n)_n ∈ X$. If such an X is analytic as a subset of $ℝ^ω$, then either X is Polishable as a vector subspace, or X admits a subspace strongly isomorphic to the space $c_{00}$ of finite sequences, or to the space $ℓ_∞$ of bounded sequences. When X is Polishable, the metrics have a very simple form as in the case studied in [So], which allows us to study precisely the properties of those X's
Mots-clés :
Borel complexity, subspaces of real sequences, topology of subspaces of real sequences, Polishable spaces, dichotomy theorems, Borel equivalence relations
Affiliations des auteurs :
Pierre Casevitz 1
@article{10_4064_fm_165_3_249_284,
author = {Pierre Casevitz},
title = {Dichotomies pour les espaces de suites r\'eelles},
journal = {Fundamenta Mathematicae},
pages = {249--284},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2000},
doi = {10.4064/fm-165-3-249-284},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/}
}
TY - JOUR AU - Pierre Casevitz TI - Dichotomies pour les espaces de suites réelles JO - Fundamenta Mathematicae PY - 2000 SP - 249 EP - 284 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-249-284/ DO - 10.4064/fm-165-3-249-284 LA - fr ID - 10_4064_fm_165_3_249_284 ER -
Pierre Casevitz. Dichotomies pour les espaces de suites réelles. Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 249-284. doi: 10.4064/fm-165-3-249-284
Cité par Sources :