Every reasonably sized matrix group is a subgroup of $S_∞$
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 35-40.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Every reasonably sized matrix group has an injective homomorphism into the group $S_∞$ of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into $S_∞$.
DOI : 10.4064/fm-164-1-35-40
Keywords: infinite symmetric group, matrix groups, nonarchimedian absolute values, field extensions, topological groups

Robert Kallman 1

1
@article{10_4064_fm_164_1_35_40,
     author = {Robert Kallman},
     title = {Every reasonably sized matrix group is a subgroup of $S_\ensuremath{\infty}$},
     journal = {Fundamenta Mathematicae},
     pages = {35--40},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-164-1-35-40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-35-40/}
}
TY  - JOUR
AU  - Robert Kallman
TI  - Every reasonably sized matrix group is a subgroup of $S_∞$
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 35
EP  - 40
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-35-40/
DO  - 10.4064/fm-164-1-35-40
LA  - en
ID  - 10_4064_fm_164_1_35_40
ER  - 
%0 Journal Article
%A Robert Kallman
%T Every reasonably sized matrix group is a subgroup of $S_∞$
%J Fundamenta Mathematicae
%D 2000
%P 35-40
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-35-40/
%R 10.4064/fm-164-1-35-40
%G en
%F 10_4064_fm_164_1_35_40
Robert Kallman. Every reasonably sized matrix group is a subgroup of $S_∞$. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 35-40. doi : 10.4064/fm-164-1-35-40. http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-35-40/

Cité par Sources :