Every reasonably sized matrix group is a subgroup of $S_∞$
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 35-40
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Every reasonably sized matrix group has an injective homomorphism into the group $S_∞$ of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into $S_∞$.
Keywords:
infinite symmetric group, matrix groups, nonarchimedian absolute values, field extensions, topological groups
Affiliations des auteurs :
Robert Kallman 1
@article{10_4064_fm_164_1_35_40,
author = {Robert Kallman},
title = {Every reasonably sized matrix group is a subgroup of $S_\ensuremath{\infty}$},
journal = {Fundamenta Mathematicae},
pages = {35--40},
year = {2000},
volume = {164},
number = {1},
doi = {10.4064/fm-164-1-35-40},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-35-40/}
}
Robert Kallman. Every reasonably sized matrix group is a subgroup of $S_∞$. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 35-40. doi: 10.4064/fm-164-1-35-40
Cité par Sources :