PCA sets and convexity
Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 267-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Three sets occurring in functional analysis are shown to be of class PCA (also called $Σ^1_2$) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].
DOI : 10.4064/fm-163-3-267-275

Robert Kaufman 1

1
@article{10_4064_fm_163_3_267_275,
     author = {Robert Kaufman},
     title = {PCA sets and convexity},
     journal = {Fundamenta Mathematicae},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-163-3-267-275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-267-275/}
}
TY  - JOUR
AU  - Robert Kaufman
TI  - PCA sets and convexity
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 267
EP  - 275
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-267-275/
DO  - 10.4064/fm-163-3-267-275
LA  - en
ID  - 10_4064_fm_163_3_267_275
ER  - 
%0 Journal Article
%A Robert Kaufman
%T PCA sets and convexity
%J Fundamenta Mathematicae
%D 2000
%P 267-275
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-267-275/
%R 10.4064/fm-163-3-267-275
%G en
%F 10_4064_fm_163_3_267_275
Robert Kaufman. PCA sets and convexity. Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 267-275. doi : 10.4064/fm-163-3-267-275. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-267-275/

Cité par Sources :