Expansions of the real line by open sets: o-minimality and open cores
Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 193-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The open core of a structure ℜ := (ℝ,,...) is defined to be the reduct (in the sense of definability) of ℜ generated by all of its definable open sets. If the open core of ℜ is o-minimal, then the topological closure of any definable set has finitely many connected components. We show that if every definable subset of ℝ is finite or uncountable, or if ℜ defines addition and multiplication and every definable open subset of ℝ has finitely many connected components, then the open core of ℜ is o-minimal.
Affiliations des auteurs :
Chris Miller 1 ; Patrick Speissegger 1
@article{10_4064_fm_162_3_193_208,
author = {Chris Miller and Patrick Speissegger},
title = {Expansions of the real line by open sets: o-minimality and open cores},
journal = {Fundamenta Mathematicae},
pages = {193--208},
publisher = {mathdoc},
volume = {162},
number = {3},
year = {1999},
doi = {10.4064/fm-162-3-193-208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-193-208/}
}
TY - JOUR AU - Chris Miller AU - Patrick Speissegger TI - Expansions of the real line by open sets: o-minimality and open cores JO - Fundamenta Mathematicae PY - 1999 SP - 193 EP - 208 VL - 162 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-193-208/ DO - 10.4064/fm-162-3-193-208 LA - en ID - 10_4064_fm_162_3_193_208 ER -
%0 Journal Article %A Chris Miller %A Patrick Speissegger %T Expansions of the real line by open sets: o-minimality and open cores %J Fundamenta Mathematicae %D 1999 %P 193-208 %V 162 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-193-208/ %R 10.4064/fm-162-3-193-208 %G en %F 10_4064_fm_162_3_193_208
Chris Miller; Patrick Speissegger. Expansions of the real line by open sets: o-minimality and open cores. Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 193-208. doi: 10.4064/fm-162-3-193-208
Cité par Sources :