Compositions of simple maps
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 149-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A map (= continuous function) is of order ≤ k if each of its point-inverses has at most k elements. Following [4], maps of order ≤ 2 are called simple.  Which maps are compositions of simple closed [open, clopen] maps? How many simple maps are really needed to represent a given map? It is proved herein that every closed map of order ≤ k defined on an n-dimensional metric space is a composition of (n+1)k-1 simple closed maps (with metric domains). This theorem fails to be true for non-metrizable spaces. An appropriate map on a Cantor cube of uncountable weight is described.
DOI : 10.4064/fm-162-2-149-162
Mots-clés : composition, simple map, closed map, map of order ≤ k, finite-dimensional, zero-dimensional, Cantor cube

Jerzy Krzempek 1

1
@article{10_4064_fm_162_2_149_162,
     author = {Jerzy Krzempek},
     title = {Compositions of simple maps},
     journal = {Fundamenta Mathematicae},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-162-2-149-162},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-149-162/}
}
TY  - JOUR
AU  - Jerzy Krzempek
TI  - Compositions of simple maps
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 149
EP  - 162
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-149-162/
DO  - 10.4064/fm-162-2-149-162
LA  - fr
ID  - 10_4064_fm_162_2_149_162
ER  - 
%0 Journal Article
%A Jerzy Krzempek
%T Compositions of simple maps
%J Fundamenta Mathematicae
%D 1999
%P 149-162
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-149-162/
%R 10.4064/fm-162-2-149-162
%G fr
%F 10_4064_fm_162_2_149_162
Jerzy Krzempek. Compositions of simple maps. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 149-162. doi : 10.4064/fm-162-2-149-162. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-149-162/

Cité par Sources :