A Lefschetz-type coincidence theorem
Fundamenta Mathematicae, Tome 162 (1999) no. 1, pp. 65-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: $I_{fg} = λ _{fg}$, that is, the coincidence index is equal to the Lefschetz number. It follows that if $λ_{fg} ≠ 0$ then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with "point-like" (acyclic) and "sphere-like" values.
Keywords:
Lefschetz coincidence theory, Lefschetz number, coincidence index, fixed point, multivalued map
Affiliations des auteurs :
Peter Saveliev 1
@article{10_4064_fm_162_1_65_89,
author = {Peter Saveliev},
title = {A {Lefschetz-type} coincidence theorem},
journal = {Fundamenta Mathematicae},
pages = {65--89},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {1999},
doi = {10.4064/fm-162-1-65-89},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-1-65-89/}
}
Peter Saveliev. A Lefschetz-type coincidence theorem. Fundamenta Mathematicae, Tome 162 (1999) no. 1, pp. 65-89. doi: 10.4064/fm-162-1-65-89
Cité par Sources :