Postnikov invariants of H-spaces
Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 17-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is known that the order of all Postnikov $k$-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the $k$-invariants $k^{m+1}(X)$ of $X$ in dimensions $m ≤ 2n$ if $X$ is an $(n-1)$-connected H-space which is not necessarily of finite type $(n ≥ 1)$. Similar results hold more generally for higher k-invariants if $X$ is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of $X$.
Affiliations des auteurs :
Dominique Arlettaz 1 ; Nicole Pointet-Tischler 1
@article{10_4064_fm_161_1_2_17_35,
author = {Dominique Arlettaz and Nicole Pointet-Tischler},
title = {Postnikov invariants of {H-spaces}},
journal = {Fundamenta Mathematicae},
pages = {17--35},
year = {1999},
volume = {161},
number = {1},
doi = {10.4064/fm-161-1-2-17-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/}
}
TY - JOUR AU - Dominique Arlettaz AU - Nicole Pointet-Tischler TI - Postnikov invariants of H-spaces JO - Fundamenta Mathematicae PY - 1999 SP - 17 EP - 35 VL - 161 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/ DO - 10.4064/fm-161-1-2-17-35 LA - en ID - 10_4064_fm_161_1_2_17_35 ER -
Dominique Arlettaz; Nicole Pointet-Tischler. Postnikov invariants of H-spaces. Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 17-35. doi: 10.4064/fm-161-1-2-17-35
Cité par Sources :