Postnikov invariants of H-spaces
Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 17-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is known that the order of all Postnikov $k$-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the $k$-invariants $k^{m+1}(X)$ of $X$ in dimensions $m ≤ 2n$ if $X$ is an $(n-1)$-connected H-space which is not necessarily of finite type $(n ≥ 1)$. Similar results hold more generally for higher k-invariants if $X$ is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of $X$.
DOI : 10.4064/fm-161-1-2-17-35

Dominique Arlettaz 1 ; Nicole Pointet-Tischler 1

1
@article{10_4064_fm_161_1_2_17_35,
     author = {Dominique Arlettaz and Nicole Pointet-Tischler},
     title = {Postnikov invariants of {H-spaces}},
     journal = {Fundamenta Mathematicae},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-161-1-2-17-35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/}
}
TY  - JOUR
AU  - Dominique Arlettaz
AU  - Nicole Pointet-Tischler
TI  - Postnikov invariants of H-spaces
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 17
EP  - 35
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/
DO  - 10.4064/fm-161-1-2-17-35
LA  - en
ID  - 10_4064_fm_161_1_2_17_35
ER  - 
%0 Journal Article
%A Dominique Arlettaz
%A Nicole Pointet-Tischler
%T Postnikov invariants of H-spaces
%J Fundamenta Mathematicae
%D 1999
%P 17-35
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/
%R 10.4064/fm-161-1-2-17-35
%G en
%F 10_4064_fm_161_1_2_17_35
Dominique Arlettaz; Nicole Pointet-Tischler. Postnikov invariants of H-spaces. Fundamenta Mathematicae, Tome 161 (1999) no. 1, pp. 17-35. doi : 10.4064/fm-161-1-2-17-35. http://geodesic.mathdoc.fr/articles/10.4064/fm-161-1-2-17-35/

Cité par Sources :