Ergodic averages and free $ℤ^2$ actions
Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 247-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If the ergodic transformations S, T generate a free $ℤ^2$ action on a finite non-atomic measure space (X,S,µ) then for any $c_1,c_2 ∈ ℝ$ there exists a measurable function f on X for which $({N+1})^{-1} ∑_{j=0}^Nf(S^jx) → c_1$ and $(N+1)^{-1} ∑_{j=0}^Nf(T^jx) → c_2 µ$-almost everywhere as N → ∞. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.
@article{10_4064_fm_160_3_247_254,
author = {Zolt\'an Buczolich},
title = {Ergodic averages and free $\ensuremath{\mathbb{Z}}^2$ actions},
journal = {Fundamenta Mathematicae},
pages = {247--254},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {1999},
doi = {10.4064/fm-160-3-247-254},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/}
}
TY - JOUR AU - Zoltán Buczolich TI - Ergodic averages and free $ℤ^2$ actions JO - Fundamenta Mathematicae PY - 1999 SP - 247 EP - 254 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/ DO - 10.4064/fm-160-3-247-254 LA - en ID - 10_4064_fm_160_3_247_254 ER -
Zoltán Buczolich. Ergodic averages and free $ℤ^2$ actions. Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 247-254. doi: 10.4064/fm-160-3-247-254
Cité par Sources :