Ergodic averages and free $ℤ^2$ actions
Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 247-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If the ergodic transformations S, T generate a free $ℤ^2$ action on a finite non-atomic measure space (X,S,µ) then for any $c_1,c_2 ∈ ℝ$ there exists a measurable function f on X for which $({N+1})^{-1} ∑_{j=0}^Nf(S^jx) → c_1$ and $(N+1)^{-1} ∑_{j=0}^Nf(T^jx) → c_2 µ$-almost everywhere as N → ∞. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.
DOI : 10.4064/fm-160-3-247-254

Zoltán Buczolich 1

1
@article{10_4064_fm_160_3_247_254,
     author = {Zolt\'an Buczolich},
     title = {Ergodic averages and free $\ensuremath{\mathbb{Z}}^2$ actions},
     journal = {Fundamenta Mathematicae},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-160-3-247-254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/}
}
TY  - JOUR
AU  - Zoltán Buczolich
TI  - Ergodic averages and free $ℤ^2$ actions
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 247
EP  - 254
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/
DO  - 10.4064/fm-160-3-247-254
LA  - en
ID  - 10_4064_fm_160_3_247_254
ER  - 
%0 Journal Article
%A Zoltán Buczolich
%T Ergodic averages and free $ℤ^2$ actions
%J Fundamenta Mathematicae
%D 1999
%P 247-254
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/
%R 10.4064/fm-160-3-247-254
%G en
%F 10_4064_fm_160_3_247_254
Zoltán Buczolich. Ergodic averages and free $ℤ^2$ actions. Fundamenta Mathematicae, Tome 160 (1999) no. 3, pp. 247-254. doi : 10.4064/fm-160-3-247-254. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-3-247-254/

Cité par Sources :