Countable partitions of the sets of points and lines
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 183-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The following theorem is proved, answering a question raised by Davies in 1963. If $L_0 ∪ L_1 ∪ L_2 ∪...$ is a partition of the set of lines of $ℝ^n$, then there is a partition $ℝ^n = S_0 ∪ S_1 ∪ S_2 ∪...$ such that $|ℓ ∩ S_i| ≤ 2$ whenever $ℓ ∈ L_i$. There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.
Keywords:
infinite partitions, Euclidean space
Affiliations des auteurs :
James H. Schmerl 1
@article{10_4064_fm_160_2_183_196,
author = {James H. Schmerl},
title = {Countable partitions of the sets of points and lines},
journal = {Fundamenta Mathematicae},
pages = {183--196},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {1999},
doi = {10.4064/fm-160-2-183-196},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/}
}
TY - JOUR AU - James H. Schmerl TI - Countable partitions of the sets of points and lines JO - Fundamenta Mathematicae PY - 1999 SP - 183 EP - 196 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/ DO - 10.4064/fm-160-2-183-196 LA - en ID - 10_4064_fm_160_2_183_196 ER -
James H. Schmerl. Countable partitions of the sets of points and lines. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 183-196. doi: 10.4064/fm-160-2-183-196
Cité par Sources :