Countable partitions of the sets of points and lines
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 183-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following theorem is proved, answering a question raised by Davies in 1963. If $L_0 ∪ L_1 ∪ L_2 ∪...$ is a partition of the set of lines of $ℝ^n$, then there is a partition $ℝ^n = S_0 ∪ S_1 ∪ S_2 ∪...$ such that $|ℓ ∩ S_i| ≤ 2$ whenever $ℓ ∈ L_i$. There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.
DOI : 10.4064/fm-160-2-183-196
Keywords: infinite partitions, Euclidean space

James H. Schmerl 1

1
@article{10_4064_fm_160_2_183_196,
     author = {James H. Schmerl},
     title = {Countable partitions of the sets of points and lines},
     journal = {Fundamenta Mathematicae},
     pages = {183--196},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-160-2-183-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/}
}
TY  - JOUR
AU  - James H. Schmerl
TI  - Countable partitions of the sets of points and lines
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 183
EP  - 196
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/
DO  - 10.4064/fm-160-2-183-196
LA  - en
ID  - 10_4064_fm_160_2_183_196
ER  - 
%0 Journal Article
%A James H. Schmerl
%T Countable partitions of the sets of points and lines
%J Fundamenta Mathematicae
%D 1999
%P 183-196
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/
%R 10.4064/fm-160-2-183-196
%G en
%F 10_4064_fm_160_2_183_196
James H. Schmerl. Countable partitions of the sets of points and lines. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 183-196. doi : 10.4064/fm-160-2-183-196. http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-183-196/

Cité par Sources :