Analytic determinacy and $0^{\# }$ A forcing-free proof of Harrington’s theorem
Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 153-159
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the following theorem: Given a⊆ω and $1 ≤ α ω_1^{CK}$, if for some $η ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$. We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: $Σ_1^1$-Turing-determinacy implies the existence of $0^#$.
@article{10_4064_fm_160_2_153_159,
author = {Ramez L. Sami},
title = {Analytic determinacy and $0^{\# }$ {A} forcing-free proof of {Harrington{\textquoteright}s} theorem},
journal = {Fundamenta Mathematicae},
pages = {153--159},
year = {1999},
volume = {160},
number = {2},
doi = {10.4064/fm-160-2-153-159},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-153-159/}
}
TY - JOUR
AU - Ramez L. Sami
TI - Analytic determinacy and $0^{\# }$ A forcing-free proof of Harrington’s theorem
JO - Fundamenta Mathematicae
PY - 1999
SP - 153
EP - 159
VL - 160
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-153-159/
DO - 10.4064/fm-160-2-153-159
LA - en
ID - 10_4064_fm_160_2_153_159
ER -
%0 Journal Article
%A Ramez L. Sami
%T Analytic determinacy and $0^{\# }$ A forcing-free proof of Harrington’s theorem
%J Fundamenta Mathematicae
%D 1999
%P 153-159
%V 160
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-160-2-153-159/
%R 10.4064/fm-160-2-153-159
%G en
%F 10_4064_fm_160_2_153_159
Ramez L. Sami. Analytic determinacy and $0^{\# }$ A forcing-free proof of Harrington’s theorem. Fundamenta Mathematicae, Tome 160 (1999) no. 2, pp. 153-159. doi: 10.4064/fm-160-2-153-159
Cité par Sources :