On infinite composition of affine mappings
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 85-90.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

 Let ${F_i = 1,...,N}$ be affine mappings of $ℝ^n$. It is well known that if there exists j ≤ 1 such that for every $σ_1,...,σ _j ∈ {1,..., N}$ the composition (1) $F_{σ1}∘...∘ F_{σ_j}$ is a contraction, then for any infinite sequence $σ_1, σ_2, ... ∈ {1,..., N}$ and any $z ∈ ℝ^n$, the sequence (2)$F_{σ1}∘...∘ F_{σ_n}(z)$ is convergent and the limit is independent of z. We prove the following converse result: If (2) is convergent for any $z ∈ ℝ^n$ and any $σ = {σ_1, σ_2,...}$ belonging to some subshift Σ of N symbols (and the limit is independent of z), then there exists j ≥ 1 such that for every $σ = {σ_1, σ_2,...} ∈ Σ$ the composition (1) is a contraction. This result can be considered as a generalization of the main theorem of Daubechies and Lagarias [1], p. 239. The proof involves some easy but non-trivial combinatorial considerations. The most important tool is a weighted version of the König Lemma for infinite trees in graph theory
DOI : 10.4064/fm-159-1-85-90
Keywords: affine mapping, subshift, infinite tree, joint contraction

László Máté 1

1
@article{10_4064_fm_159_1_85_90,
     author = {L\'aszl\'o M\'at\'e},
     title = {On infinite composition of affine mappings},
     journal = {Fundamenta Mathematicae},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-159-1-85-90},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-85-90/}
}
TY  - JOUR
AU  - László Máté
TI  - On infinite composition of affine mappings
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 85
EP  - 90
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-85-90/
DO  - 10.4064/fm-159-1-85-90
LA  - en
ID  - 10_4064_fm_159_1_85_90
ER  - 
%0 Journal Article
%A László Máté
%T On infinite composition of affine mappings
%J Fundamenta Mathematicae
%D 1999
%P 85-90
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-85-90/
%R 10.4064/fm-159-1-85-90
%G en
%F 10_4064_fm_159_1_85_90
László Máté. On infinite composition of affine mappings. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 85-90. doi : 10.4064/fm-159-1-85-90. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-85-90/

Cité par Sources :