Borel sets with large squares
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 1-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

 For a cardinal μ we give a sufficient condition $⊕_μ$ (involving ranks measuring existence of independent sets) for: $⊗_μ$ if a Borel set B ⊆ ℝ × ℝ contains a μ-square (i.e. a set of the form A × A with |A| =μ) then it contains a $2^{ℵ_0}$-square and even a perfect square, and also for $⊗'_μ$ if $ψ ∈ L_{ω_1, ω}$ has a model of cardinality μ then it has a model of cardinality continuum generated in a "nice", "absolute" way. Assuming $MA + 2^{ℵ_0} > μ$ for transparency, those three conditions ($⊕_μ$, $⊗_μ$ and $⊗'_μ$) are equivalent, and from this we deduce that e.g. $∧_{α ω_1}[ 2^{ℵ_0}≥ ℵ_α ⇒ ¬ ⊗_{ℵ_α}]$, and also that $min{μ: ⊗_μ}$, if $ 2^{ℵ_0}$, has cofinality $ℵ_1$.   We also deal with Borel rectangles and related model-theoretic problems.
DOI : 10.4064/fm-159-1-1-50

Saharon Shelah 1

1
@article{10_4064_fm_159_1_1_50,
     author = {Saharon Shelah},
     title = {Borel sets with large squares},
     journal = {Fundamenta Mathematicae},
     pages = {1--50},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {1999},
     doi = {10.4064/fm-159-1-1-50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-1-50/}
}
TY  - JOUR
AU  - Saharon Shelah
TI  - Borel sets with large squares
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 1
EP  - 50
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-1-50/
DO  - 10.4064/fm-159-1-1-50
LA  - en
ID  - 10_4064_fm_159_1_1_50
ER  - 
%0 Journal Article
%A Saharon Shelah
%T Borel sets with large squares
%J Fundamenta Mathematicae
%D 1999
%P 1-50
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-1-50/
%R 10.4064/fm-159-1-1-50
%G en
%F 10_4064_fm_159_1_1_50
Saharon Shelah. Borel sets with large squares. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 1-50. doi : 10.4064/fm-159-1-1-50. http://geodesic.mathdoc.fr/articles/10.4064/fm-159-1-1-50/

Cité par Sources :