On backward stability of holomorphic dynamical systems
Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 97-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a polynomial with one critical point (maybe multiple), which does not have attracting or neutral periodic orbits, we prove that the backward dynamics is stable provided the Julia set is locally connected. The latter is proved to be equivalent to the non-existence of a wandering continuum in the Julia set or to the shrinking of Yoccoz puzzle-pieces to points.
DOI : 10.4064/fm-158-2-97-107

G. Levin 1

1
@article{10_4064_fm_158_2_97_107,
     author = {G. Levin},
     title = {On backward stability of holomorphic dynamical systems},
     journal = {Fundamenta Mathematicae},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-158-2-97-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-97-107/}
}
TY  - JOUR
AU  - G. Levin
TI  - On backward stability of holomorphic dynamical systems
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 97
EP  - 107
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-97-107/
DO  - 10.4064/fm-158-2-97-107
LA  - en
ID  - 10_4064_fm_158_2_97_107
ER  - 
%0 Journal Article
%A G. Levin
%T On backward stability of holomorphic dynamical systems
%J Fundamenta Mathematicae
%D 1998
%P 97-107
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-97-107/
%R 10.4064/fm-158-2-97-107
%G en
%F 10_4064_fm_158_2_97_107
G. Levin. On backward stability of holomorphic dynamical systems. Fundamenta Mathematicae, Tome 158 (1998) no. 2, pp. 97-107. doi : 10.4064/fm-158-2-97-107. http://geodesic.mathdoc.fr/articles/10.4064/fm-158-2-97-107/

Cité par Sources :