Inverse limit of $M$ -cocycles and applications
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 261-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any m, 2 ≤ m ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 b 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and $#C(T)/wcl{T^n: n ∈ ℤ} = ∞$
DOI : 10.4064/fm-157-2-3-261-276
Mots-clés : multiplicity, rank, compact group extension, Morse cocycle

Jan Kwiatkowski 1

1
@article{10_4064_fm_157_2_3_261_276,
     author = {Jan Kwiatkowski},
     title = {Inverse limit of $M$ -cocycles and applications},
     journal = {Fundamenta Mathematicae},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-157-2-3-261-276},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/}
}
TY  - JOUR
AU  - Jan Kwiatkowski
TI  - Inverse limit of $M$ -cocycles and applications
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 261
EP  - 276
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/
DO  - 10.4064/fm-157-2-3-261-276
LA  - fr
ID  - 10_4064_fm_157_2_3_261_276
ER  - 
%0 Journal Article
%A Jan Kwiatkowski
%T Inverse limit of $M$ -cocycles and applications
%J Fundamenta Mathematicae
%D 1998
%P 261-276
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/
%R 10.4064/fm-157-2-3-261-276
%G fr
%F 10_4064_fm_157_2_3_261_276
Jan Kwiatkowski. Inverse limit of $M$ -cocycles and applications. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 261-276. doi : 10.4064/fm-157-2-3-261-276. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/

Cité par Sources :