Inverse limit of $M$ -cocycles and applications
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 261-276
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any m, 2 ≤ m ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 b 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and $#C(T)/wcl{T^n: n ∈ ℤ} = ∞$
Mots-clés :
multiplicity, rank, compact group extension, Morse cocycle
Affiliations des auteurs :
Jan Kwiatkowski 1
@article{10_4064_fm_157_2_3_261_276,
author = {Jan Kwiatkowski},
title = {Inverse limit of $M$ -cocycles and applications},
journal = {Fundamenta Mathematicae},
pages = {261--276},
year = {1998},
volume = {157},
number = {2},
doi = {10.4064/fm-157-2-3-261-276},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/}
}
TY - JOUR AU - Jan Kwiatkowski TI - Inverse limit of $M$ -cocycles and applications JO - Fundamenta Mathematicae PY - 1998 SP - 261 EP - 276 VL - 157 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-261-276/ DO - 10.4064/fm-157-2-3-261-276 LA - fr ID - 10_4064_fm_157_2_3_261_276 ER -
Jan Kwiatkowski. Inverse limit of $M$ -cocycles and applications. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 261-276. doi: 10.4064/fm-157-2-3-261-276
Cité par Sources :