Entropy and growth of expanding periodic orbits for one-dimensional maps
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f be a continuous map of the circle $S^1$ or the interval I into itself, piecewise $C^1$, piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least $e^{(h-ε)n_k}$ periodic points of period $n_k$ with large derivative along the period, $|(f^{n_k})'| > e^{(h-ε)n_k}$ for some subsequence ${n_k}$ of natural numbers. For a strictly monotone map f without critical points we show the existence of at least $(1-ε) e^{hn}$ such points.
DOI : 10.4064/fm-157-2-3-245-254

A. Katok 1 ; A. Mezhirov 1

1
@article{10_4064_fm_157_2_3_245_254,
     author = {A. Katok and A. Mezhirov},
     title = {Entropy and growth of expanding periodic orbits for one-dimensional maps},
     journal = {Fundamenta Mathematicae},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {1998},
     doi = {10.4064/fm-157-2-3-245-254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-245-254/}
}
TY  - JOUR
AU  - A. Katok
AU  - A. Mezhirov
TI  - Entropy and growth of expanding periodic orbits for one-dimensional maps
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 245
EP  - 254
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-245-254/
DO  - 10.4064/fm-157-2-3-245-254
LA  - en
ID  - 10_4064_fm_157_2_3_245_254
ER  - 
%0 Journal Article
%A A. Katok
%A A. Mezhirov
%T Entropy and growth of expanding periodic orbits for one-dimensional maps
%J Fundamenta Mathematicae
%D 1998
%P 245-254
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-245-254/
%R 10.4064/fm-157-2-3-245-254
%G en
%F 10_4064_fm_157_2_3_245_254
A. Katok; A. Mezhirov. Entropy and growth of expanding periodic orbits for one-dimensional maps. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 245-254. doi : 10.4064/fm-157-2-3-245-254. http://geodesic.mathdoc.fr/articles/10.4064/fm-157-2-3-245-254/

Cité par Sources :