Definability within structures related to Pascal’s triangle modulo an integer
Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 111-129
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let Sq denote the set of squares, and let $SQ_n$ be the squaring function restricted to powers of n; let ⊥ denote the coprimeness relation. Let $B_n(x,y)=({x+y \atop x}) MOD n$. For every integer n ≥ 2 addition and multiplication are definable in the structures 〈ℕ; B_n,⊥〉 and 〈ℕ; B_n,Sq〉; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of 〈ℕ; B_p,SQ_p〉 is decidable.
Keywords:
Pascal's triangle modulo n, decidability, definability
Affiliations des auteurs :
Alexis Bès 1 ; Ivan Korec 1
@article{10_4064_fm_156_2_111_129,
author = {Alexis B\`es and Ivan Korec},
title = {Definability within structures related to {Pascal{\textquoteright}s} triangle modulo an integer},
journal = {Fundamenta Mathematicae},
pages = {111--129},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {1998},
doi = {10.4064/fm-156-2-111-129},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-111-129/}
}
TY - JOUR AU - Alexis Bès AU - Ivan Korec TI - Definability within structures related to Pascal’s triangle modulo an integer JO - Fundamenta Mathematicae PY - 1998 SP - 111 EP - 129 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-111-129/ DO - 10.4064/fm-156-2-111-129 LA - en ID - 10_4064_fm_156_2_111_129 ER -
%0 Journal Article %A Alexis Bès %A Ivan Korec %T Definability within structures related to Pascal’s triangle modulo an integer %J Fundamenta Mathematicae %D 1998 %P 111-129 %V 156 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-156-2-111-129/ %R 10.4064/fm-156-2-111-129 %G en %F 10_4064_fm_156_2_111_129
Alexis Bès; Ivan Korec. Definability within structures related to Pascal’s triangle modulo an integer. Fundamenta Mathematicae, Tome 156 (1998) no. 2, pp. 111-129. doi: 10.4064/fm-156-2-111-129
Cité par Sources :