A functional S-dual in a strong shape category
Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 261-274
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In the S-category ${\mathfrak P}$ (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual $DX, X = (X,n) ∈ {\mathfrak P}$, turns out to be of the same weak homotopy type as an appropriately defined functional dual $\overline{(S^0)^X}$ (Corollary 4.9). Sometimes the functional object $\overline{X^Y}$ is of the same weak homotopy type as the "real" function space $X^Y$ (§5).
Keywords:
S-duality, functional S-dual, virtual spaces, weak homotopy type, compact-open strong shape
Affiliations des auteurs :
Friedrich W. Bauer 1
@article{10_4064_fm_154_3_261_274,
author = {Friedrich W. Bauer},
title = {A functional {S-dual} in a strong shape category},
journal = {Fundamenta Mathematicae},
pages = {261--274},
year = {1997},
volume = {154},
number = {3},
doi = {10.4064/fm-154-3-261-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-261-274/}
}
Friedrich W. Bauer. A functional S-dual in a strong shape category. Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 261-274. doi: 10.4064/fm-154-3-261-274
Cité par Sources :