A strongly non-Ramsey uncountable graph
Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 203-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is consistent that there exists a graph X of cardinality $ℵ_1$ such that every graph has an edge coloring with $ℵ_1$ colors in which the induced copies of X (if there are any) are totally multicolored (get all possible colors).
DOI : 10.4064/fm-154-2-203-205

Péter Komjáth 1

1
@article{10_4064_fm_154_2_203_205,
     author = {P\'eter Komj\'ath},
     title = {A strongly {non-Ramsey} uncountable graph},
     journal = {Fundamenta Mathematicae},
     pages = {203--205},
     publisher = {mathdoc},
     volume = {154},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-154-2-203-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-203-205/}
}
TY  - JOUR
AU  - Péter Komjáth
TI  - A strongly non-Ramsey uncountable graph
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 203
EP  - 205
VL  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-203-205/
DO  - 10.4064/fm-154-2-203-205
LA  - en
ID  - 10_4064_fm_154_2_203_205
ER  - 
%0 Journal Article
%A Péter Komjáth
%T A strongly non-Ramsey uncountable graph
%J Fundamenta Mathematicae
%D 1997
%P 203-205
%V 154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-203-205/
%R 10.4064/fm-154-2-203-205
%G en
%F 10_4064_fm_154_2_203_205
Péter Komjáth. A strongly non-Ramsey uncountable graph. Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 203-205. doi : 10.4064/fm-154-2-203-205. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-203-205/

Cité par Sources :