A strongly non-Ramsey uncountable graph
Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 203-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is consistent that there exists a graph X of cardinality $ℵ_1$ such that every graph has an edge coloring with $ℵ_1$ colors in which the induced copies of X (if there are any) are totally multicolored (get all possible colors).
@article{10_4064_fm_154_2_203_205,
author = {P\'eter Komj\'ath},
title = {A strongly {non-Ramsey} uncountable graph},
journal = {Fundamenta Mathematicae},
pages = {203--205},
year = {1997},
volume = {154},
number = {2},
doi = {10.4064/fm-154-2-203-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-203-205/}
}
Péter Komjáth. A strongly non-Ramsey uncountable graph. Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 203-205. doi: 10.4064/fm-154-2-203-205
Cité par Sources :