Two dichotomy theorems on colourability of non-analytic graphs
Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 183-201.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove:  Theorem 1. Let κ be an uncountable cardinal. Every κ-Suslin graph G on reals satisfies one of the following two requirements: (I) G admits a κ-Borel colouring by ordinals below κ; (II) there exists a continuous homomorphism (in some cases an embedding) of a certain locally countable Borel graph $G_0$ into G.  Theorem 2. In the Solovay model, every OD graph G on reals satisfies one of the following two requirements: (I) G admits an OD colouring by countable ordinals; (II) as above.
DOI : 10.4064/fm-154-2-183-201

Vladimir Kanovei 1

1
@article{10_4064_fm_154_2_183_201,
     author = {Vladimir  Kanovei},
     title = {Two dichotomy theorems on colourability of non-analytic graphs},
     journal = {Fundamenta Mathematicae},
     pages = {183--201},
     publisher = {mathdoc},
     volume = {154},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-154-2-183-201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-183-201/}
}
TY  - JOUR
AU  - Vladimir  Kanovei
TI  - Two dichotomy theorems on colourability of non-analytic graphs
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 183
EP  - 201
VL  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-183-201/
DO  - 10.4064/fm-154-2-183-201
LA  - en
ID  - 10_4064_fm_154_2_183_201
ER  - 
%0 Journal Article
%A Vladimir  Kanovei
%T Two dichotomy theorems on colourability of non-analytic graphs
%J Fundamenta Mathematicae
%D 1997
%P 183-201
%V 154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-183-201/
%R 10.4064/fm-154-2-183-201
%G en
%F 10_4064_fm_154_2_183_201
Vladimir  Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 183-201. doi : 10.4064/fm-154-2-183-201. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-183-201/

Cité par Sources :