Diagonal conditions in ordered spaces
Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 99-123.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a space X and a regular uncountable cardinal κ ≤ |X| we say that κ ∈ D(X) if for each $T ⊂ {X^2} - Δ(X)$ with |T| = κ, there is an open neighborhood W of Δ(X) such that |T - W| = κ. If $ω_1 ∈ D(X)$ then we say that X has a small diagonal, and if every regular uncountable κ ≤ |X| belongs to D(X) then we say that X has an H-diagonal. In this paper we investigate the interplay between D(X) and topological properties of X in the category of generalized ordered spaces. We obtain cardinal invariant theorems and metrization theorems for such spaces, proving, for example, that a Lindelöf linearly ordered space with a small diagonal is metrizable. We give examples showing that our results are the sharpest possible, e.g., that there is a first countable, perfect, paracompact Čech-complete linearly ordered space with an H-diagonal that is not metrizable. Our example shows that a recent CH-result of Juhász and Szentmiklóssy on metrizability of compact Hausdorff spaces with small diagonals cannot be generalized beyond the class of locally compact spaces. We present examples showing the interplay of the above diagonal conditions with set theory in a natural extension of the Michael line construction.
DOI : 10.4064/fm-153-2-99-123
Keywords: H-diagonal, small diagonal, linearly ordered topological space, generalized ordered space, cardinal invariant, metrizability, paracompact space, Čech-complete space, p-space, Michael line, Sorgenfrey line, σ-disjoint base

Harold R. Bennett 1 ; David J. Lutzer 1

1
@article{10_4064_fm_153_2_99_123,
     author = {Harold R.  Bennett and David J.  Lutzer},
     title = {Diagonal conditions in ordered spaces},
     journal = {Fundamenta Mathematicae},
     pages = {99--123},
     publisher = {mathdoc},
     volume = {153},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-153-2-99-123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-99-123/}
}
TY  - JOUR
AU  - Harold R.  Bennett
AU  - David J.  Lutzer
TI  - Diagonal conditions in ordered spaces
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 99
EP  - 123
VL  - 153
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-99-123/
DO  - 10.4064/fm-153-2-99-123
LA  - en
ID  - 10_4064_fm_153_2_99_123
ER  - 
%0 Journal Article
%A Harold R.  Bennett
%A David J.  Lutzer
%T Diagonal conditions in ordered spaces
%J Fundamenta Mathematicae
%D 1997
%P 99-123
%V 153
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-99-123/
%R 10.4064/fm-153-2-99-123
%G en
%F 10_4064_fm_153_2_99_123
Harold R.  Bennett; David J.  Lutzer. Diagonal conditions in ordered spaces. Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 99-123. doi : 10.4064/fm-153-2-99-123. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-99-123/

Cité par Sources :