Gδ -sets in topological spaces and games
Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 41-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Players ONE and TWO play the following game: In the nth inning ONE chooses a set $O_n$ from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset $T_n$ of X. The players must obey the rule that $O_n ⊆ O_{n+1} ⊆ T_{n+1} ⊆ T_n$ for each n. TWO wins if the intersection of TWO's sets is equal to the union of ONE's sets. If ONE has no winning strategy, then each element of ℱ is a $G_δ$-set. To what extent is the converse true? We show that:  (A) For ℱ the collection of countable subsets of X:   1. There are subsets of the real line for which neither player has a winning strategy in this game.   2. The statement "If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a $G_δ$-set" is independent of the axioms of classical mathematics.   3. There are spaces whose countable subsets are $G_δ$-sets, and yet ONE has a winning strategy in this game.   4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.  (B) For ℱ the collection of $G_σ$-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.
DOI : 10.4064/fm-153-1-41-58
Keywords: game, strategy, Lusin set, Sierpiński set, Rothberger's property C", concentrated set, λ-set, σ-set, perfectly meager set, Q-set, $s_0$-set, $A_1$-set, $A_2$-set, $A_3$-set, ${\ninegot b}$, ${\ninegot d}$

Just Winfried 1 ; Marion Sheepers 1 ; Juris Steprans 1 ; Paul Szeptycki 1

1
@article{10_4064_fm_153_1_41_58,
     author = {Just Winfried and Marion Sheepers and Juris Steprans and Paul Szeptycki},
     title = {G\ensuremath{\delta} -sets in topological spaces and games},
     journal = {Fundamenta Mathematicae},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-153-1-41-58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-41-58/}
}
TY  - JOUR
AU  - Just Winfried
AU  - Marion Sheepers
AU  - Juris Steprans
AU  - Paul Szeptycki
TI  - Gδ -sets in topological spaces and games
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 41
EP  - 58
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-41-58/
DO  - 10.4064/fm-153-1-41-58
LA  - en
ID  - 10_4064_fm_153_1_41_58
ER  - 
%0 Journal Article
%A Just Winfried
%A Marion Sheepers
%A Juris Steprans
%A Paul Szeptycki
%T Gδ -sets in topological spaces and games
%J Fundamenta Mathematicae
%D 1997
%P 41-58
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-41-58/
%R 10.4064/fm-153-1-41-58
%G en
%F 10_4064_fm_153_1_41_58
Just Winfried; Marion Sheepers; Juris Steprans; Paul Szeptycki. Gδ -sets in topological spaces and games. Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 41-58. doi : 10.4064/fm-153-1-41-58. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-41-58/

Cité par Sources :