A partial order where all monotone maps are definable
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 255-265.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is consistent that there is a partial order (P,≤) of size $ℵ_1$ such that every monotone function f:P → P is first order definable in (P,≤).
DOI : 10.4064/fm-152-3-255-265

Martin Goldstern 1 ; Saharon Shelah 1

1
@article{10_4064_fm_152_3_255_265,
     author = {Martin Goldstern and Saharon Shelah},
     title = {A partial order where all monotone maps are definable},
     journal = {Fundamenta Mathematicae},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {1997},
     doi = {10.4064/fm-152-3-255-265},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/}
}
TY  - JOUR
AU  - Martin Goldstern
AU  - Saharon Shelah
TI  - A partial order where all monotone maps are definable
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 255
EP  - 265
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/
DO  - 10.4064/fm-152-3-255-265
LA  - en
ID  - 10_4064_fm_152_3_255_265
ER  - 
%0 Journal Article
%A Martin Goldstern
%A Saharon Shelah
%T A partial order where all monotone maps are definable
%J Fundamenta Mathematicae
%D 1997
%P 255-265
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/
%R 10.4064/fm-152-3-255-265
%G en
%F 10_4064_fm_152_3_255_265
Martin Goldstern; Saharon Shelah. A partial order where all monotone maps are definable. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 255-265. doi : 10.4064/fm-152-3-255-265. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/

Cité par Sources :