A partial order where all monotone maps are definable
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 255-265
It is consistent that there is a partial order (P,≤) of size $ℵ_1$ such that every monotone function f:P → P is first order definable in (P,≤).
@article{10_4064_fm_152_3_255_265,
author = {Martin Goldstern and Saharon Shelah},
title = {A partial order where all monotone maps are definable},
journal = {Fundamenta Mathematicae},
pages = {255--265},
year = {1997},
volume = {152},
number = {3},
doi = {10.4064/fm-152-3-255-265},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/}
}
TY - JOUR AU - Martin Goldstern AU - Saharon Shelah TI - A partial order where all monotone maps are definable JO - Fundamenta Mathematicae PY - 1997 SP - 255 EP - 265 VL - 152 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-255-265/ DO - 10.4064/fm-152-3-255-265 LA - en ID - 10_4064_fm_152_3_255_265 ER -
Martin Goldstern; Saharon Shelah. A partial order where all monotone maps are definable. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 255-265. doi: 10.4064/fm-152-3-255-265
Cité par Sources :