Connected covers and Neisendorfer's localization theorem
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 211-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Our point of departure is J. Neisendorfer's localization theorem which reveals a subtle connection between some simply connected finite complexes and their connected covers. We show that even though the connected covers do not forget that they came from a finite complex their homotopy-theoretic properties are drastically different from those of finite complexes. For instance, connected covers of finite complexes may have uncountable genus or nontrivial SNT sets, their Lusternik-Schnirelmann category may be infinite, and they may serve as domains for nontrivial phantom maps.
DOI : 10.4064/fm-152-3-211-230

C. A. McGibbon 1 ; J. M. Møller 1

1
@article{10_4064_fm_152_3_211_230,
     author = {C. A. McGibbon and J. M. M{\o}ller},
     title = {Connected covers and {Neisendorfer's} localization theorem},
     journal = {Fundamenta Mathematicae},
     pages = {211--230},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {1997},
     doi = {10.4064/fm-152-3-211-230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-211-230/}
}
TY  - JOUR
AU  - C. A. McGibbon
AU  - J. M. Møller
TI  - Connected covers and Neisendorfer's localization theorem
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 211
EP  - 230
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-211-230/
DO  - 10.4064/fm-152-3-211-230
LA  - en
ID  - 10_4064_fm_152_3_211_230
ER  - 
%0 Journal Article
%A C. A. McGibbon
%A J. M. Møller
%T Connected covers and Neisendorfer's localization theorem
%J Fundamenta Mathematicae
%D 1997
%P 211-230
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-211-230/
%R 10.4064/fm-152-3-211-230
%G en
%F 10_4064_fm_152_3_211_230
C. A. McGibbon; J. M. Møller. Connected covers and Neisendorfer's localization theorem. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 211-230. doi : 10.4064/fm-152-3-211-230. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-211-230/

Cité par Sources :