A Nielsen theory for intersection numbers
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 117-150.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number. In particular, NI(f,g) gives a lower bound for the number of points of intersection for all maps homotopic to f and g.
DOI : 10.4064/fm-152-2-117-150

Christopher K. McCord 1

1
@article{10_4064_fm_152_2_117_150,
     author = {Christopher K. McCord},
     title = {A {Nielsen} theory for intersection numbers},
     journal = {Fundamenta Mathematicae},
     pages = {117--150},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-152-2-117-150},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-117-150/}
}
TY  - JOUR
AU  - Christopher K. McCord
TI  - A Nielsen theory for intersection numbers
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 117
EP  - 150
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-117-150/
DO  - 10.4064/fm-152-2-117-150
LA  - en
ID  - 10_4064_fm_152_2_117_150
ER  - 
%0 Journal Article
%A Christopher K. McCord
%T A Nielsen theory for intersection numbers
%J Fundamenta Mathematicae
%D 1997
%P 117-150
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-117-150/
%R 10.4064/fm-152-2-117-150
%G en
%F 10_4064_fm_152_2_117_150
Christopher K. McCord. A Nielsen theory for intersection numbers. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 117-150. doi : 10.4064/fm-152-2-117-150. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-117-150/

Cité par Sources :