On a discrete version of the antipodal theorem
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 189-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping $f: S^k → ℝ^k$ there exists a point $x ∈ S^k$ such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which $S^k$ is replaced by the set of vertices of a high-dimensional cube equipped with Hamming's metric. In place of equality we obtain some optimal estimates of $inf_x ||f(x)-f(-x)||$ which were previously known (as far as the author knows) only for f linear (cf. [1]).
@article{10_4064_fm_151_2_189_194,
author = {Krzysztof Oleszkiewicz},
title = {On a discrete version of the antipodal theorem},
journal = {Fundamenta Mathematicae},
pages = {189--194},
publisher = {mathdoc},
volume = {151},
number = {2},
year = {1996},
doi = {10.4064/fm-151-2-189-194},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/}
}
TY - JOUR AU - Krzysztof Oleszkiewicz TI - On a discrete version of the antipodal theorem JO - Fundamenta Mathematicae PY - 1996 SP - 189 EP - 194 VL - 151 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/ DO - 10.4064/fm-151-2-189-194 LA - en ID - 10_4064_fm_151_2_189_194 ER -
Krzysztof Oleszkiewicz. On a discrete version of the antipodal theorem. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 189-194. doi: 10.4064/fm-151-2-189-194
Cité par Sources :