On a discrete version of the antipodal theorem
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 189-194.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping $f: S^k → ℝ^k$ there exists a point $x ∈ S^k$ such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which $S^k$ is replaced by the set of vertices of a high-dimensional cube equipped with Hamming's metric. In place of equality we obtain some optimal estimates of $inf_x ||f(x)-f(-x)||$ which were previously known (as far as the author knows) only for f linear (cf. [1]).
DOI : 10.4064/fm-151-2-189-194

Krzysztof Oleszkiewicz 1

1
@article{10_4064_fm_151_2_189_194,
     author = {Krzysztof Oleszkiewicz},
     title = {On a discrete version of the antipodal theorem},
     journal = {Fundamenta Mathematicae},
     pages = {189--194},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-151-2-189-194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/}
}
TY  - JOUR
AU  - Krzysztof Oleszkiewicz
TI  - On a discrete version of the antipodal theorem
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 189
EP  - 194
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/
DO  - 10.4064/fm-151-2-189-194
LA  - en
ID  - 10_4064_fm_151_2_189_194
ER  - 
%0 Journal Article
%A Krzysztof Oleszkiewicz
%T On a discrete version of the antipodal theorem
%J Fundamenta Mathematicae
%D 1996
%P 189-194
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/
%R 10.4064/fm-151-2-189-194
%G en
%F 10_4064_fm_151_2_189_194
Krzysztof Oleszkiewicz. On a discrete version of the antipodal theorem. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 189-194. doi : 10.4064/fm-151-2-189-194. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-189-194/

Cité par Sources :