The Zahorski theorem is valid in Gevrey classes
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 149-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let {Ω,F,G} be a partition of $ℝ^n$ such that Ω is open, F is $F_σ$ and of the first category, and G is $G_δ$. We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.
DOI : 10.4064/fm-151-2-149-166
Keywords: Gevrey classes, defect point, divergence point

Jean Schmets 1 ; Manuel Valdivia 1

1
@article{10_4064_fm_151_2_149_166,
     author = {Jean Schmets and Manuel Valdivia},
     title = {The {Zahorski} theorem is valid in {Gevrey} classes},
     journal = {Fundamenta Mathematicae},
     pages = {149--166},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-151-2-149-166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/}
}
TY  - JOUR
AU  - Jean Schmets
AU  - Manuel Valdivia
TI  - The Zahorski theorem is valid in Gevrey classes
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 149
EP  - 166
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/
DO  - 10.4064/fm-151-2-149-166
LA  - en
ID  - 10_4064_fm_151_2_149_166
ER  - 
%0 Journal Article
%A Jean Schmets
%A Manuel Valdivia
%T The Zahorski theorem is valid in Gevrey classes
%J Fundamenta Mathematicae
%D 1996
%P 149-166
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/
%R 10.4064/fm-151-2-149-166
%G en
%F 10_4064_fm_151_2_149_166
Jean Schmets; Manuel Valdivia. The Zahorski theorem is valid in Gevrey classes. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 149-166. doi : 10.4064/fm-151-2-149-166. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/

Cité par Sources :