The Zahorski theorem is valid in Gevrey classes
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 149-166
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let {Ω,F,G} be a partition of $ℝ^n$ such that Ω is open, F is $F_σ$ and of the first category, and G is $G_δ$. We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.
Keywords:
Gevrey classes, defect point, divergence point
Affiliations des auteurs :
Jean Schmets 1 ; Manuel Valdivia 1
@article{10_4064_fm_151_2_149_166,
author = {Jean Schmets and Manuel Valdivia},
title = {The {Zahorski} theorem is valid in {Gevrey} classes},
journal = {Fundamenta Mathematicae},
pages = {149--166},
publisher = {mathdoc},
volume = {151},
number = {2},
year = {1996},
doi = {10.4064/fm-151-2-149-166},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/}
}
TY - JOUR AU - Jean Schmets AU - Manuel Valdivia TI - The Zahorski theorem is valid in Gevrey classes JO - Fundamenta Mathematicae PY - 1996 SP - 149 EP - 166 VL - 151 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/ DO - 10.4064/fm-151-2-149-166 LA - en ID - 10_4064_fm_151_2_149_166 ER -
%0 Journal Article %A Jean Schmets %A Manuel Valdivia %T The Zahorski theorem is valid in Gevrey classes %J Fundamenta Mathematicae %D 1996 %P 149-166 %V 151 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-149-166/ %R 10.4064/fm-151-2-149-166 %G en %F 10_4064_fm_151_2_149_166
Jean Schmets; Manuel Valdivia. The Zahorski theorem is valid in Gevrey classes. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 149-166. doi: 10.4064/fm-151-2-149-166
Cité par Sources :