On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 265-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.
DOI : 10.4064/fm-150-3-265-289

Hans-Joachim Baues 1 ; Manfred Hartl 1

1
@article{10_4064_fm_150_3_265_289,
     author = {Hans-Joachim  Baues and Manfred Hartl},
     title = {On the homotopy category of {Moore} spaces and the cohomology of the category of abelian groups},
     journal = {Fundamenta Mathematicae},
     pages = {265--289},
     publisher = {mathdoc},
     volume = {150},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-150-3-265-289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-265-289/}
}
TY  - JOUR
AU  - Hans-Joachim  Baues
AU  - Manfred Hartl
TI  - On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 265
EP  - 289
VL  - 150
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-265-289/
DO  - 10.4064/fm-150-3-265-289
LA  - en
ID  - 10_4064_fm_150_3_265_289
ER  - 
%0 Journal Article
%A Hans-Joachim  Baues
%A Manfred Hartl
%T On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
%J Fundamenta Mathematicae
%D 1996
%P 265-289
%V 150
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-265-289/
%R 10.4064/fm-150-3-265-289
%G en
%F 10_4064_fm_150_3_265_289
Hans-Joachim  Baues; Manfred Hartl. On the homotopy category of Moore spaces and the cohomology of the category of abelian groups. Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 265-289. doi : 10.4064/fm-150-3-265-289. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-265-289/

Cité par Sources :