A Ramsey theorem for polyadic spaces
Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 189-195.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A polyadic space is a Hausdorff continuous image of some power of the one-point compactification of a discrete space. We prove a Ramsey-like property for polyadic spaces which for Boolean spaces can be stated as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint. One corollary is that $(ακ)^ω$ is not a universal preimage for uniform Eberlein compact spaces of weight at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage. Another consequence is that the property of being polyadic is not a regular closed hereditary property.
DOI : 10.4064/fm-150-2-189-195
Keywords: polyadic, regular closed, uniform Eberlein, hyperspace

M. Bell 1

1
@article{10_4064_fm_150_2_189_195,
     author = {M. Bell},
     title = {A {Ramsey} theorem for polyadic spaces},
     journal = {Fundamenta Mathematicae},
     pages = {189--195},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-150-2-189-195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-189-195/}
}
TY  - JOUR
AU  - M. Bell
TI  - A Ramsey theorem for polyadic spaces
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 189
EP  - 195
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-189-195/
DO  - 10.4064/fm-150-2-189-195
LA  - en
ID  - 10_4064_fm_150_2_189_195
ER  - 
%0 Journal Article
%A M. Bell
%T A Ramsey theorem for polyadic spaces
%J Fundamenta Mathematicae
%D 1996
%P 189-195
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-189-195/
%R 10.4064/fm-150-2-189-195
%G en
%F 10_4064_fm_150_2_189_195
M. Bell. A Ramsey theorem for polyadic spaces. Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 189-195. doi : 10.4064/fm-150-2-189-195. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-189-195/

Cité par Sources :