On the real cohomology of spaces of free loops on manifolds
Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 173-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let LX be the space of free loops on a simply connected manifold X. When the real cohomology of X is a tensor product of algebras generated by a single element, we determine the algebra structure of the real cohomology of LX by using the cyclic bar complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of the real cohomology of LX can be represented by differential forms on LX through Chen's iterated integral map. Let $\mathbb{T}$ be the circle group. The $\mathbb{T}$-equivariant cohomology of LX is also studied in terms of the cyclic homology of Ω(X).
DOI : 10.4064/fm-150-2-173-188

Katsuhiko Kuribayashi 1

1
@article{10_4064_fm_150_2_173_188,
     author = {Katsuhiko Kuribayashi},
     title = {On the real cohomology of spaces of free loops on manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {173--188},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-150-2-173-188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/}
}
TY  - JOUR
AU  - Katsuhiko Kuribayashi
TI  - On the real cohomology of spaces of free loops on manifolds
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 173
EP  - 188
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/
DO  - 10.4064/fm-150-2-173-188
LA  - en
ID  - 10_4064_fm_150_2_173_188
ER  - 
%0 Journal Article
%A Katsuhiko Kuribayashi
%T On the real cohomology of spaces of free loops on manifolds
%J Fundamenta Mathematicae
%D 1996
%P 173-188
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/
%R 10.4064/fm-150-2-173-188
%G en
%F 10_4064_fm_150_2_173_188
Katsuhiko Kuribayashi. On the real cohomology of spaces of free loops on manifolds. Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 173-188. doi : 10.4064/fm-150-2-173-188. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/

Cité par Sources :