On the real cohomology of spaces of free loops on manifolds
Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 173-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let LX be the space of free loops on a simply connected manifold X. When the real cohomology of X is a tensor product of algebras generated by a single element, we determine the algebra structure of the real cohomology of LX by using the cyclic bar complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of the real cohomology of LX can be represented by differential forms on LX through Chen's iterated integral map. Let $\mathbb{T}$ be the circle group. The $\mathbb{T}$-equivariant cohomology of LX is also studied in terms of the cyclic homology of Ω(X).
@article{10_4064_fm_150_2_173_188,
author = {Katsuhiko Kuribayashi},
title = {On the real cohomology of spaces of free loops on manifolds},
journal = {Fundamenta Mathematicae},
pages = {173--188},
publisher = {mathdoc},
volume = {150},
number = {2},
year = {1996},
doi = {10.4064/fm-150-2-173-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/}
}
TY - JOUR AU - Katsuhiko Kuribayashi TI - On the real cohomology of spaces of free loops on manifolds JO - Fundamenta Mathematicae PY - 1996 SP - 173 EP - 188 VL - 150 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/ DO - 10.4064/fm-150-2-173-188 LA - en ID - 10_4064_fm_150_2_173_188 ER -
%0 Journal Article %A Katsuhiko Kuribayashi %T On the real cohomology of spaces of free loops on manifolds %J Fundamenta Mathematicae %D 1996 %P 173-188 %V 150 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-173-188/ %R 10.4064/fm-150-2-173-188 %G en %F 10_4064_fm_150_2_173_188
Katsuhiko Kuribayashi. On the real cohomology of spaces of free loops on manifolds. Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 173-188. doi: 10.4064/fm-150-2-173-188
Cité par Sources :