The dimension of $X^n$ where $X$ is a separable metric space
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 43-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a separable metric space X, we consider possibilities for the sequence $S(X) = {d_n: n ∈ ℕ}$ where $d_n = dim X^n$. In Section 1, a general method for producing examples is given which can be used to realize many of the possible sequences. For example, there is $X_n$ such that $S(X_n) = {n, n+1, n+2,...}$, $Y_n$, for n >1, such that $S(Y_n) = {n, n+1, n+2, n+2, n+2,...}$, and Z such that S(Z) = {4, 4, 6, 6, 7, 8, 9,...}. In Section 2, a subset X of $ℝ^2$ is shown to exist which satisfies $1 = dim X = dim X^2$ and $dim X^3 = 2$.
DOI : 10.4064/fm-150-1-43-54

John Kulesza 1

1
@article{10_4064_fm_150_1_43_54,
     author = {John Kulesza},
     title = {The dimension of $X^n$ where $X$ is a separable metric space},
     journal = {Fundamenta Mathematicae},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-150-1-43-54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/}
}
TY  - JOUR
AU  - John Kulesza
TI  - The dimension of $X^n$ where $X$ is a separable metric space
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 43
EP  - 54
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/
DO  - 10.4064/fm-150-1-43-54
LA  - en
ID  - 10_4064_fm_150_1_43_54
ER  - 
%0 Journal Article
%A John Kulesza
%T The dimension of $X^n$ where $X$ is a separable metric space
%J Fundamenta Mathematicae
%D 1996
%P 43-54
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/
%R 10.4064/fm-150-1-43-54
%G en
%F 10_4064_fm_150_1_43_54
John Kulesza. The dimension of $X^n$ where $X$ is a separable metric space. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 43-54. doi : 10.4064/fm-150-1-43-54. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/

Cité par Sources :