The dimension of $X^n$ where $X$ is a separable metric space
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 43-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a separable metric space X, we consider possibilities for the sequence $S(X) = {d_n: n ∈ ℕ}$ where $d_n = dim X^n$. In Section 1, a general method for producing examples is given which can be used to realize many of the possible sequences. For example, there is $X_n$ such that $S(X_n) = {n, n+1, n+2,...}$, $Y_n$, for n >1, such that $S(Y_n) = {n, n+1, n+2, n+2, n+2,...}$, and Z such that S(Z) = {4, 4, 6, 6, 7, 8, 9,...}. In Section 2, a subset X of $ℝ^2$ is shown to exist which satisfies $1 = dim X = dim X^2$ and $dim X^3 = 2$.
@article{10_4064_fm_150_1_43_54,
author = {John Kulesza},
title = {The dimension of $X^n$ where $X$ is a separable metric space},
journal = {Fundamenta Mathematicae},
pages = {43--54},
publisher = {mathdoc},
volume = {150},
number = {1},
year = {1996},
doi = {10.4064/fm-150-1-43-54},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/}
}
TY - JOUR AU - John Kulesza TI - The dimension of $X^n$ where $X$ is a separable metric space JO - Fundamenta Mathematicae PY - 1996 SP - 43 EP - 54 VL - 150 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-43-54/ DO - 10.4064/fm-150-1-43-54 LA - en ID - 10_4064_fm_150_1_43_54 ER -
John Kulesza. The dimension of $X^n$ where $X$ is a separable metric space. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 43-54. doi: 10.4064/fm-150-1-43-54
Cité par Sources :