The Dugundji extension property can fail in $ω_μ$ -metrizable spaces
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 11-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there exist $ω_μ$-metrizable spaces which do not have the Dugundji extension property ($2^{ω_1}$ with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.
DOI : 10.4064/fm-150-1-11-16
Keywords: Dugundji extension theorem, $ω_μ$-metrizable spaces, box topology, Baire category, Michael line

Ian S. Stares 1 ; Jerry E. Vaughan 1

1
@article{10_4064_fm_150_1_11_16,
     author = {Ian S.  Stares and Jerry E.  Vaughan},
     title = {The {Dugundji} extension property can fail in $\ensuremath{\omega}_\ensuremath{\mu}$ -metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-150-1-11-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/}
}
TY  - JOUR
AU  - Ian S.  Stares
AU  - Jerry E.  Vaughan
TI  - The Dugundji extension property can fail in $ω_μ$ -metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 11
EP  - 16
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/
DO  - 10.4064/fm-150-1-11-16
LA  - en
ID  - 10_4064_fm_150_1_11_16
ER  - 
%0 Journal Article
%A Ian S.  Stares
%A Jerry E.  Vaughan
%T The Dugundji extension property can fail in $ω_μ$ -metrizable spaces
%J Fundamenta Mathematicae
%D 1996
%P 11-16
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/
%R 10.4064/fm-150-1-11-16
%G en
%F 10_4064_fm_150_1_11_16
Ian S.  Stares; Jerry E.  Vaughan. The Dugundji extension property can fail in $ω_μ$ -metrizable spaces. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 11-16. doi : 10.4064/fm-150-1-11-16. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/

Cité par Sources :