The Dugundji extension property can fail in $ω_μ$ -metrizable spaces
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 11-16
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there exist $ω_μ$-metrizable spaces which do not have the Dugundji extension property ($2^{ω_1}$ with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.
Keywords:
Dugundji extension theorem, $ω_μ$-metrizable spaces, box topology, Baire category, Michael line
Affiliations des auteurs :
Ian S. Stares 1 ; Jerry E. Vaughan 1
@article{10_4064_fm_150_1_11_16,
author = {Ian S. Stares and Jerry E. Vaughan},
title = {The {Dugundji} extension property can fail in $\ensuremath{\omega}_\ensuremath{\mu}$ -metrizable spaces},
journal = {Fundamenta Mathematicae},
pages = {11--16},
publisher = {mathdoc},
volume = {150},
number = {1},
year = {1996},
doi = {10.4064/fm-150-1-11-16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/}
}
TY - JOUR AU - Ian S. Stares AU - Jerry E. Vaughan TI - The Dugundji extension property can fail in $ω_μ$ -metrizable spaces JO - Fundamenta Mathematicae PY - 1996 SP - 11 EP - 16 VL - 150 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/ DO - 10.4064/fm-150-1-11-16 LA - en ID - 10_4064_fm_150_1_11_16 ER -
%0 Journal Article %A Ian S. Stares %A Jerry E. Vaughan %T The Dugundji extension property can fail in $ω_μ$ -metrizable spaces %J Fundamenta Mathematicae %D 1996 %P 11-16 %V 150 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-11-16/ %R 10.4064/fm-150-1-11-16 %G en %F 10_4064_fm_150_1_11_16
Ian S. Stares; Jerry E. Vaughan. The Dugundji extension property can fail in $ω_μ$ -metrizable spaces. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 11-16. doi: 10.4064/fm-150-1-11-16
Cité par Sources :