On Haar null sets
Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 205-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-locally-compact groups.) Thus we obtain the following characterization of locally compact, abelian groups: Let G be a Polish, abelian group. Then the σ-ideal of Haar null sets satisfies the countable chain condition iff G is locally compact. We also show that in Polish, abelian, non-locally-compact groups analytic sets cannot be approximated up to Haar null sets by Borel, or even co-analytic, sets; however, each analytic Haar null set is contained in a Borel Haar null set. Actually, we prove all the above results for a class of groups which is much wider than the class of all Polish, abelian groups, namely for Polish groups admitting a metric which is both left- and right-invariant.
DOI : 10.4064/fm-149-3-205-210

Sławomir Solecki 1

1
@article{10_4064_fm_149_3_205_210,
     author = {S{\l}awomir  Solecki},
     title = {On {Haar} null sets},
     journal = {Fundamenta Mathematicae},
     pages = {205--210},
     publisher = {mathdoc},
     volume = {149},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-149-3-205-210},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-205-210/}
}
TY  - JOUR
AU  - Sławomir  Solecki
TI  - On Haar null sets
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 205
EP  - 210
VL  - 149
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-205-210/
DO  - 10.4064/fm-149-3-205-210
LA  - de
ID  - 10_4064_fm_149_3_205_210
ER  - 
%0 Journal Article
%A Sławomir  Solecki
%T On Haar null sets
%J Fundamenta Mathematicae
%D 1996
%P 205-210
%V 149
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-205-210/
%R 10.4064/fm-149-3-205-210
%G de
%F 10_4064_fm_149_3_205_210
Sławomir  Solecki. On Haar null sets. Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 205-210. doi : 10.4064/fm-149-3-205-210. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-205-210/

Cité par Sources :