Inessentiality with respect to subspaces
Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 93-98.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a compactum and let $A={(A_i,B_i):i=1,2,...}$ be a countable family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for every closed $F_i$ separating $A_i$ and $B_i$ the intersection $(∩ F_i) ∩ Y $ is not empty. So A is inessential on Y if there exist closed $F_i$ separating $A_i$ and $B_i$ such that $∩ F_i$ does not intersect Y. Properties of inessentiality are studied and applied to prove:  Theorem. For every countable family of pairs of disjoint open subsets of a compactum X there exists an open set G ∩ X on which A is inessential and for every positive-dimensional Y ∩ X ╲ G there exists an infinite subfamily B ∩ A which is essential on Y.  >This theorem and its generalization provide a new approach for constructing hereditarily infinite-dimensional compacta not containing subspaces of positive dimension which are weakly infinite-dimensional or C-spaces.
DOI : 10.4064/fm-147-1-93-68

Michael Levin 1

1
@article{10_4064_fm_147_1_93_68,
     author = {Michael Levin},
     title = {Inessentiality with respect to subspaces},
     journal = {Fundamenta Mathematicae},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {1995},
     doi = {10.4064/fm-147-1-93-68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-93-68/}
}
TY  - JOUR
AU  - Michael Levin
TI  - Inessentiality with respect to subspaces
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 93
EP  - 98
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-93-68/
DO  - 10.4064/fm-147-1-93-68
LA  - en
ID  - 10_4064_fm_147_1_93_68
ER  - 
%0 Journal Article
%A Michael Levin
%T Inessentiality with respect to subspaces
%J Fundamenta Mathematicae
%D 1995
%P 93-98
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-93-68/
%R 10.4064/fm-147-1-93-68
%G en
%F 10_4064_fm_147_1_93_68
Michael Levin. Inessentiality with respect to subspaces. Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 93-98. doi : 10.4064/fm-147-1-93-68. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-93-68/

Cité par Sources :