Iterated coil enlargements of algebras
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 251-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form $q_Λ$ of Λ is weakly non-negative, (c)~Λ is an iterated coil enlargement
DOI : 10.4064/fm-146-3-251-266

Bertha Tomé 1

1
@article{10_4064_fm_146_3_251_266,
     author = {Bertha Tom\'e},
     title = {Iterated coil enlargements of algebras},
     journal = {Fundamenta Mathematicae},
     pages = {251--266},
     publisher = {mathdoc},
     volume = {146},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-146-3-251-266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-251-266/}
}
TY  - JOUR
AU  - Bertha Tomé
TI  - Iterated coil enlargements of algebras
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 251
EP  - 266
VL  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-251-266/
DO  - 10.4064/fm-146-3-251-266
LA  - en
ID  - 10_4064_fm_146_3_251_266
ER  - 
%0 Journal Article
%A Bertha Tomé
%T Iterated coil enlargements of algebras
%J Fundamenta Mathematicae
%D 1994
%P 251-266
%V 146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-251-266/
%R 10.4064/fm-146-3-251-266
%G en
%F 10_4064_fm_146_3_251_266
Bertha Tomé. Iterated coil enlargements of algebras. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 251-266. doi : 10.4064/fm-146-3-251-266. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-251-266/

Cité par Sources :