On open maps of Borel sets
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 203-213.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We answer in the affirmative [Th. 3 or Corollary 1] the question of L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational numbers ℙ not $G_δ · F_σ$ and of the second category in itself be mapped onto an arbitrary analytic set Y ⊂ ℙ of the second category in itself by an open map? Note that under a space of the second category in itself Keldysh understood a Baire space. The answer to the question as stated is negative if X is Baire but Y is not Baire.
DOI : 10.4064/fm-146-3-203-213
Keywords: open maps, Borel sets, analytic sets, space of the first category, space of the second category, Baire space

A. Ostrovsky 1

1
@article{10_4064_fm_146_3_203_213,
     author = {A. Ostrovsky},
     title = {On open maps of {Borel} sets},
     journal = {Fundamenta Mathematicae},
     pages = {203--213},
     publisher = {mathdoc},
     volume = {146},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-146-3-203-213},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-203-213/}
}
TY  - JOUR
AU  - A. Ostrovsky
TI  - On open maps of Borel sets
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 203
EP  - 213
VL  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-203-213/
DO  - 10.4064/fm-146-3-203-213
LA  - en
ID  - 10_4064_fm_146_3_203_213
ER  - 
%0 Journal Article
%A A. Ostrovsky
%T On open maps of Borel sets
%J Fundamenta Mathematicae
%D 1994
%P 203-213
%V 146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-203-213/
%R 10.4064/fm-146-3-203-213
%G en
%F 10_4064_fm_146_3_203_213
A. Ostrovsky. On open maps of Borel sets. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 203-213. doi : 10.4064/fm-146-3-203-213. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-203-213/

Cité par Sources :