Properly homotopic nontrivial planes are isotopic
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 141-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to $ℝ^3$ are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.
DOI : 10.4064/fm-146-2-141-152

Bobby Winters 1

1
@article{10_4064_fm_146_2_141_152,
     author = {Bobby Winters},
     title = {Properly homotopic nontrivial planes are isotopic},
     journal = {Fundamenta Mathematicae},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-146-2-141-152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/}
}
TY  - JOUR
AU  - Bobby Winters
TI  - Properly homotopic nontrivial planes are isotopic
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 141
EP  - 152
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/
DO  - 10.4064/fm-146-2-141-152
LA  - en
ID  - 10_4064_fm_146_2_141_152
ER  - 
%0 Journal Article
%A Bobby Winters
%T Properly homotopic nontrivial planes are isotopic
%J Fundamenta Mathematicae
%D 1994
%P 141-152
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/
%R 10.4064/fm-146-2-141-152
%G en
%F 10_4064_fm_146_2_141_152
Bobby Winters. Properly homotopic nontrivial planes are isotopic. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 141-152. doi : 10.4064/fm-146-2-141-152. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/

Cité par Sources :