Properly homotopic nontrivial planes are isotopic
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 141-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to $ℝ^3$ are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.
@article{10_4064_fm_146_2_141_152,
author = {Bobby Winters},
title = {Properly homotopic nontrivial planes are isotopic},
journal = {Fundamenta Mathematicae},
pages = {141--152},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {1994},
doi = {10.4064/fm-146-2-141-152},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/}
}
TY - JOUR AU - Bobby Winters TI - Properly homotopic nontrivial planes are isotopic JO - Fundamenta Mathematicae PY - 1994 SP - 141 EP - 152 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-141-152/ DO - 10.4064/fm-146-2-141-152 LA - en ID - 10_4064_fm_146_2_141_152 ER -
Bobby Winters. Properly homotopic nontrivial planes are isotopic. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 141-152. doi: 10.4064/fm-146-2-141-152
Cité par Sources :