ℳ-rank and meager types
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 121-139.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume T is superstable and small. Using the multiplicity rank ℳ we find locally modular types in the same manner as U-rank considerations yield regular types. We define local versions of ℳ-rank, which also yield meager types.
DOI : 10.4064/fm-146-2-121-139

Ludomir Newelski 1

1
@article{10_4064_fm_146_2_121_139,
     author = {Ludomir Newelski},
     title = {\ensuremath{\mathscr{M}}-rank and meager types},
     journal = {Fundamenta Mathematicae},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-146-2-121-139},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-121-139/}
}
TY  - JOUR
AU  - Ludomir Newelski
TI  - ℳ-rank and meager types
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 121
EP  - 139
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-121-139/
DO  - 10.4064/fm-146-2-121-139
LA  - en
ID  - 10_4064_fm_146_2_121_139
ER  - 
%0 Journal Article
%A Ludomir Newelski
%T ℳ-rank and meager types
%J Fundamenta Mathematicae
%D 1994
%P 121-139
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-121-139/
%R 10.4064/fm-146-2-121-139
%G en
%F 10_4064_fm_146_2_121_139
Ludomir Newelski. ℳ-rank and meager types. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 121-139. doi : 10.4064/fm-146-2-121-139. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-121-139/

Cité par Sources :