The space of ANR’s in $ℝ^n$
Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 31-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^{ℝ^n} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_{δσ δ}$-spaces and that, indeed, they are not $F_{σ δσ }$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_{δσ δ}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.
Keywords:
hyperspace, absolute neighborhood retract, absolute retract, $G_{δσ δ}$-set, absorber
Affiliations des auteurs :
Tadeusz Dobrowolski 1 ; Leonard R. Rubin 1
@article{10_4064_fm_146_1_31_58,
author = {Tadeusz Dobrowolski and Leonard R. Rubin},
title = {The space of {ANR{\textquoteright}s} in $\ensuremath{\mathbb{R}}^n$},
journal = {Fundamenta Mathematicae},
pages = {31--58},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {1994},
doi = {10.4064/fm-146-1-31-58},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/}
}
TY - JOUR AU - Tadeusz Dobrowolski AU - Leonard R. Rubin TI - The space of ANR’s in $ℝ^n$ JO - Fundamenta Mathematicae PY - 1994 SP - 31 EP - 58 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/ DO - 10.4064/fm-146-1-31-58 LA - en ID - 10_4064_fm_146_1_31_58 ER -
Tadeusz Dobrowolski; Leonard R. Rubin. The space of ANR’s in $ℝ^n$. Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 31-58. doi: 10.4064/fm-146-1-31-58
Cité par Sources :