The space of ANR’s in $ℝ^n$
Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 31-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^{ℝ^n} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_{δσ δ}$-spaces and that, indeed, they are not $F_{σ δσ }$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_{δσ δ}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.
DOI : 10.4064/fm-146-1-31-58
Keywords: hyperspace, absolute neighborhood retract, absolute retract, $G_{δσ δ}$-set, absorber

Tadeusz Dobrowolski 1 ; Leonard R. Rubin 1

1
@article{10_4064_fm_146_1_31_58,
     author = {Tadeusz Dobrowolski and Leonard R. Rubin},
     title = {The space of {ANR{\textquoteright}s} in $\ensuremath{\mathbb{R}}^n$},
     journal = {Fundamenta Mathematicae},
     pages = {31--58},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-146-1-31-58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/}
}
TY  - JOUR
AU  - Tadeusz Dobrowolski
AU  - Leonard R. Rubin
TI  - The space of ANR’s in $ℝ^n$
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 31
EP  - 58
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/
DO  - 10.4064/fm-146-1-31-58
LA  - en
ID  - 10_4064_fm_146_1_31_58
ER  - 
%0 Journal Article
%A Tadeusz Dobrowolski
%A Leonard R. Rubin
%T The space of ANR’s in $ℝ^n$
%J Fundamenta Mathematicae
%D 1994
%P 31-58
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/
%R 10.4064/fm-146-1-31-58
%G en
%F 10_4064_fm_146_1_31_58
Tadeusz Dobrowolski; Leonard R. Rubin. The space of ANR’s in $ℝ^n$. Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 31-58. doi : 10.4064/fm-146-1-31-58. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-31-58/

Cité par Sources :