The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 91-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the geometric realization of a cyclic set has a natural, $S^1$-equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and $S^1$-equivariant Borel homology of its geometric realization.
DOI : 10.4064/fm-145-1-91-100
Keywords: cyclic set, $S^1-CW$ complex, equivariant homology theory

Zbigniew Fiedorowicz 1 ; Wojciech Gajda 1

1
@article{10_4064_fm_145_1_91_100,
     author = {Zbigniew Fiedorowicz and Wojciech Gajda},
     title = {The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set},
     journal = {Fundamenta Mathematicae},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-145-1-91-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/}
}
TY  - JOUR
AU  - Zbigniew Fiedorowicz
AU  - Wojciech Gajda
TI  - The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 91
EP  - 100
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/
DO  - 10.4064/fm-145-1-91-100
LA  - en
ID  - 10_4064_fm_145_1_91_100
ER  - 
%0 Journal Article
%A Zbigniew Fiedorowicz
%A Wojciech Gajda
%T The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set
%J Fundamenta Mathematicae
%D 1994
%P 91-100
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/
%R 10.4064/fm-145-1-91-100
%G en
%F 10_4064_fm_145_1_91_100
Zbigniew Fiedorowicz; Wojciech Gajda. The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 91-100. doi : 10.4064/fm-145-1-91-100. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/

Cité par Sources :