The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 91-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that the geometric realization of a cyclic set has a natural, $S^1$-equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and $S^1$-equivariant Borel homology of its geometric realization.
Keywords:
cyclic set, $S^1-CW$ complex, equivariant homology theory
Affiliations des auteurs :
Zbigniew Fiedorowicz 1 ; Wojciech Gajda 1
@article{10_4064_fm_145_1_91_100,
author = {Zbigniew Fiedorowicz and Wojciech Gajda},
title = {The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set},
journal = {Fundamenta Mathematicae},
pages = {91--100},
year = {1994},
volume = {145},
number = {1},
doi = {10.4064/fm-145-1-91-100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/}
}
TY - JOUR AU - Zbigniew Fiedorowicz AU - Wojciech Gajda TI - The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set JO - Fundamenta Mathematicae PY - 1994 SP - 91 EP - 100 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/ DO - 10.4064/fm-145-1-91-100 LA - en ID - 10_4064_fm_145_1_91_100 ER -
%0 Journal Article %A Zbigniew Fiedorowicz %A Wojciech Gajda %T The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set %J Fundamenta Mathematicae %D 1994 %P 91-100 %V 145 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-91-100/ %R 10.4064/fm-145-1-91-100 %G en %F 10_4064_fm_145_1_91_100
Zbigniew Fiedorowicz; Wojciech Gajda. The $S^1$-$CW$ decomposition of the geometric realization of a cyclic set. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 91-100. doi: 10.4064/fm-145-1-91-100
Cité par Sources :