On absolute retracts of ω*
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An extremally disconnected space is called an absolute retract in the class of all extremally disconnected spaces if it is a retract of any extremally disconnected compact space in which it can be embedded. The Gleason spaces over dyadic spaces have this property. The main result of this paper says that if a space X of π-weight $ω_1$ is an absolute retract in the class of all extremally disconnected compact spaces and X is homogeneous with respect to π-weight (i.e. all non-empty open sets have the same π-weight), then X is homeomorphic to the Gleason space over the Cantor cube ${0,1}^{ω_1}$.
DOI : 10.4064/fm-145-1-1-13

A. Bella 1 ; A. Błaszczyk 1 ; A. Szymański 1

1
@article{10_4064_fm_145_1_1_13,
     author = {A. Bella and A. B{\l}aszczyk and A. Szyma\'nski},
     title = {On absolute retracts of \ensuremath{\omega}*},
     journal = {Fundamenta Mathematicae},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-145-1-1-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-1-13/}
}
TY  - JOUR
AU  - A. Bella
AU  - A. Błaszczyk
AU  - A. Szymański
TI  - On absolute retracts of ω*
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 1
EP  - 13
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-1-13/
DO  - 10.4064/fm-145-1-1-13
LA  - en
ID  - 10_4064_fm_145_1_1_13
ER  - 
%0 Journal Article
%A A. Bella
%A A. Błaszczyk
%A A. Szymański
%T On absolute retracts of ω*
%J Fundamenta Mathematicae
%D 1994
%P 1-13
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-1-13/
%R 10.4064/fm-145-1-1-13
%G en
%F 10_4064_fm_145_1_1_13
A. Bella; A. Błaszczyk; A. Szymański. On absolute retracts of ω*. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 1-13. doi : 10.4064/fm-145-1-1-13. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-1-13/

Cité par Sources :