Normal numbers and subsets of N with given densities
Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 163-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For X ⊆ [0,1], let $D_X$ denote the collection of subsets of ℕ whose densities lie in X. Given the exact location of X in the Borel or difference hierarchy, we exhibit the exact location of $D_X$. For α ≥ 3, X is properly $D_ξ(Π^0_α)$ iff $D_X$ is properly $D_ξ(Π^0_{1+α})$. We also show that for every nonempty set X ⊆[0,1], $D_X$ is $Π^0_3$-hard. For each nonempty $Π^0_2$ set X ⊆ [0,1], in particular for X = {x}, $D_X$ is $Π^0_3$-complete. For each n ≥ 2, the collection of real numbers that are normal or simply normal to base n is $Π^0_3$-complete. Moreover, $D_ℚ$, the subsets of ℕ with rational densities, is $D_2(Π^0_3)$-complete.
DOI : 10.4064/fm-144-2-163-179

Haseo Ki 1 ; Tom Linton 2

1 Caltech 253–37 Pasadena, California 91125 U.S.A.
2 Department of Mathematics Willamette University 900 State Street Salem, Oregon 97301 U.S.A.
@article{10_4064_fm_144_2_163_179,
     author = {Haseo Ki and Tom Linton},
     title = {Normal numbers and subsets of {N} with given densities},
     journal = {Fundamenta Mathematicae},
     pages = {163--179},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-144-2-163-179},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-163-179/}
}
TY  - JOUR
AU  - Haseo Ki
AU  - Tom Linton
TI  - Normal numbers and subsets of N with given densities
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 163
EP  - 179
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-163-179/
DO  - 10.4064/fm-144-2-163-179
LA  - en
ID  - 10_4064_fm_144_2_163_179
ER  - 
%0 Journal Article
%A Haseo Ki
%A Tom Linton
%T Normal numbers and subsets of N with given densities
%J Fundamenta Mathematicae
%D 1994
%P 163-179
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-163-179/
%R 10.4064/fm-144-2-163-179
%G en
%F 10_4064_fm_144_2_163_179
Haseo Ki; Tom Linton. Normal numbers and subsets of N with given densities. Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 163-179. doi : 10.4064/fm-144-2-163-179. http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-163-179/

Cité par Sources :